Detection-Friendly Nonuniformity Correction: A Union Framework for Infrared UAVTarget Detection
- URL: http://arxiv.org/abs/2504.04012v1
- Date: Sat, 05 Apr 2025 01:29:22 GMT
- Title: Detection-Friendly Nonuniformity Correction: A Union Framework for Infrared UAVTarget Detection
- Authors: Houzhang Fang, Xiaolin Wang, Zengyang Li, Lu Wang, Qingshan Li, Yi Chang, Luxin Yan,
- Abstract summary: Infrared unmanned aerial vehicle (UAV) images captured using thermal detectors are often affected by temperature dependent lowfrequency nonuniformity.<n>We present a detection-friendly union framework that simultaneously addresses both infrared and UAV target detection tasks.<n>We introduce a detection-guided self-supervised loss to reduce feature discrepancies between the two tasks, thereby enhancing detection robustness to varying nonuniformity levels.
- Score: 18.776245480405958
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Infrared unmanned aerial vehicle (UAV) images captured using thermal detectors are often affected by temperature dependent low-frequency nonuniformity, which significantly reduces the contrast of the images. Detecting UAV targets under nonuniform conditions is crucial in UAV surveillance applications. Existing methods typically treat infrared nonuniformity correction (NUC) as a preprocessing step for detection, which leads to suboptimal performance. Balancing the two tasks while enhancing detection beneficial information remains challenging. In this paper, we present a detection-friendly union framework, termed UniCD, that simultaneously addresses both infrared NUC and UAV target detection tasks in an end-to-end manner. We first model NUC as a small number of parameter estimation problem jointly driven by priors and data to generate detection-conducive images. Then, we incorporate a new auxiliary loss with target mask supervision into the backbone of the infrared UAV target detection network to strengthen target features while suppressing the background. To better balance correction and detection, we introduce a detection-guided self-supervised loss to reduce feature discrepancies between the two tasks, thereby enhancing detection robustness to varying nonuniformity levels. Additionally, we construct a new benchmark composed of 50,000 infrared images in various nonuniformity types, multi-scale UAV targets and rich backgrounds with target annotations, called IRBFD. Extensive experiments on IRBFD demonstrate that our UniCD is a robust union framework for NUC and UAV target detection while achieving real-time processing capabilities. Dataset can be available at https://github.com/IVPLaboratory/UniCD.
Related papers
- Bringing RGB and IR Together: Hierarchical Multi-Modal Enhancement for Robust Transmission Line Detection [67.02804741856512]
We propose a novel Hierarchical Multi-Modal Enhancement Network (HMMEN) that integrates RGB and IR data for robust and accurate TL detection.<n>Our method introduces two key components: (1) a Mutual Multi-Modal Enhanced Block (MMEB), which fuses and enhances hierarchical RGB and IR feature maps in a coarse-to-fine manner, and (2) a Feature Alignment Block (FAB) that corrects misalignments between decoder outputs and IR feature maps by leveraging deformable convolutions.
arXiv Detail & Related papers (2025-01-25T06:21:06Z) - UAVDB: Trajectory-Guided Adaptable Bounding Boxes for UAV Detection [0.03464344220266879]
This paper introduces UAVDB, a high-resolution UAV detection dataset constructed using Patch Intensity Convergence (PIC)<n>We first validate the accuracy and efficiency of PIC-generated bounding boxes by comparing Intersection over Union (IoU) performance and runtime.<n>We then benchmark UAVDB using state-of-the-art (SOTA) YOLO-series detectors, establishing UAVDB as a valuable resource for advancing long-range and high-resolution UAV detection.
arXiv Detail & Related papers (2024-09-09T13:27:53Z) - IRSAM: Advancing Segment Anything Model for Infrared Small Target Detection [55.554484379021524]
Infrared Small Target Detection (IRSTD) task falls short in achieving satisfying performance due to a notable domain gap between natural and infrared images.
We propose the IRSAM model for IRSTD, which improves SAM's encoder-decoder architecture to learn better feature representation of infrared small objects.
arXiv Detail & Related papers (2024-07-10T10:17:57Z) - D-YOLO a robust framework for object detection in adverse weather conditions [0.0]
Adverse weather conditions including haze, snow and rain lead to decline in image qualities, which often causes a decline in performance for deep-learning based detection networks.
To better integrate image restoration and object detection tasks, we designed a double-route network with an attention feature fusion module.
We also proposed a subnetwork to provide haze-free features to the detection network. Specifically, our D-YOLO improves the performance of the detection network by minimizing the distance between the clear feature extraction subnetwork and detection network.
arXiv Detail & Related papers (2024-03-14T09:57:15Z) - Mitigate Target-level Insensitivity of Infrared Small Target Detection
via Posterior Distribution Modeling [5.248337726304453]
Infrared Small Target Detection (IRSTD) aims to segment small targets from infrared clutter background.
We propose a diffusion model framework for Infrared Small Target Detection which compensates pixel-level discriminant with mask posterior distribution modeling.
Experiments show that the proposed method achieves competitive performance gains over state-of-the-art methods on NUAA-SIRST, IRSTD-1k, and NUDT-SIRST datasets.
arXiv Detail & Related papers (2024-03-13T09:45:30Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - ReDFeat: Recoupling Detection and Description for Multimodal Feature
Learning [51.07496081296863]
We recouple independent constraints of detection and description of multimodal feature learning with a mutual weighting strategy.
We propose a detector that possesses a large receptive field and is equipped with learnable non-maximum suppression layers.
We build a benchmark that contains cross visible, infrared, near-infrared and synthetic aperture radar image pairs for evaluating the performance of features in feature matching and image registration tasks.
arXiv Detail & Related papers (2022-05-16T04:24:22Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
This study addresses the issue of fusing infrared and visible images that appear differently for object detection.
Previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks.
This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network.
arXiv Detail & Related papers (2022-03-30T11:44:56Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
We propose a new infrared small-dim target detection method with the transformer.
We adopt the self-attention mechanism of the transformer to learn the interaction information of image features in a larger range.
We also design a feature enhancement module to learn more features of small-dim targets.
arXiv Detail & Related papers (2021-09-29T12:23:41Z) - SyNet: An Ensemble Network for Object Detection in UAV Images [13.198689566654107]
In this paper, we propose an ensemble network, SyNet, that combines a multi-stage method with a single-stage one.
As building blocks, CenterNet and Cascade R-CNN with pretrained feature extractors are utilized along with an ensembling strategy.
We report the state of the art results obtained by our proposed solution on two different datasets.
arXiv Detail & Related papers (2020-12-23T21:38:32Z) - Deep Learning-based Human Detection for UAVs with Optical and Infrared
Cameras: System and Experiments [35.342730238802886]
We present our deep learning-based human detection system that uses optical (RGB) and long-wave infrared (LWIR) cameras.
In each spectrum, a customized RetinaNet network with ResNet backbone provides human detections which are subsequently fused to minimize the overall false detection rate.
We show that by optimizing the bounding box anchors and augmenting the image resolution the number of missed detections from high altitudes can be decreased by over 20 percent.
arXiv Detail & Related papers (2020-08-10T15:30:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.