Authenticated Sublinear Quantum Private Information Retrieval
- URL: http://arxiv.org/abs/2504.04041v1
- Date: Sat, 05 Apr 2025 03:30:04 GMT
- Title: Authenticated Sublinear Quantum Private Information Retrieval
- Authors: Fengxia Liu, Zhiyong Zheng, Kun Tian, Yi Zhang, Heng Guo, Zhe Hu, Oleksiy Zhedanov, Zixian Gong,
- Abstract summary: This paper introduces a novel lower bound on communication complexity using quantum relative entropy and mutual information.<n>By leveraging Uhlmann's lemma and quantum Pinsker inequalities, the authors establish tighter bounds for information-theoretic security.
- Score: 12.91566002502802
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel lower bound on communication complexity using quantum relative entropy and mutual information, refining previous classical entropy-based results. By leveraging Uhlmann's lemma and quantum Pinsker inequalities, the authors establish tighter bounds for information-theoretic security, demonstrating that quantum protocols inherently outperform classical counterparts in balancing privacy and efficiency. Also explores symmetric Quantum Private Information Retrieval (QPIR) protocols that achieve sub-linear communication complexity while ensuring robustness against specious adversaries: A post-quantum cryptography based protocol that can be authenticated for the specious server; A ring-LWE-based protocol for post-quantum security in a single-server setting, ensuring robustness against quantum attacks; A multi-server protocol optimized for hardware practicality, reducing implementation overhead while maintaining sub-linear efficiency. These protocols address critical gaps in secure database queries, offering exponential communication improvements over classical linear-complexity methods. The work also analyzes security trade-offs under quantum specious adversaries, providing theoretical guarantees for privacy and correctness.
Related papers
- Hybrid Authentication Protocols for Advanced Quantum Networks [0.6827423171182154]
We introduce a new authentication approach that combines hardware assumptions, particularly Physical Unclonable Functions (PUFs), along with quantum properties of non-local states, such as local indistinguishability, to achieve provable security in entanglement-based protocols.
These protocols are suitable for implementation across various platforms, particularly photonics-based ones, and offer a practical and flexible solution to the long-standing challenge of authentication in quantum communication networks.
arXiv Detail & Related papers (2025-04-15T18:51:22Z) - Quantum Scheme for Private Set Intersection and Union Cardinality based on Quantum Homomorphic Encryption [8.715631190576067]
A novel quantum private set intersection and union cardinality protocol is proposed, accompanied by the corresponding quantum circuits.<n>Based on quantum homomorphic encryption, the protocol allows the intersection and union cardinality of users' private sets to be computed on quantum-encrypted data.
arXiv Detail & Related papers (2024-12-02T01:31:06Z) - Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - User-Authenticated Device-Independent Quantum Secure Direct Communication Protocol [5.420275467831935]
Device-Independent Quantum Secure Direct Communication (DI-QSDC) enhances quantum cryptography.
We propose the first of its kind DI-QSDC protocol with user identity authentication.
arXiv Detail & Related papers (2024-09-16T16:03:22Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Privacy-preserving quantum federated learning via gradient hiding [5.543544712471747]
This paper presents innovative quantum protocols with quantum communication designed to address the privacy problem.
In contrast to previous works that leverage expressive variational quantum circuits or differential privacy techniques, we consider gradient information concealment using quantum states.
We propose two distinct FL protocols, one based on private inner-product estimation and the other on incremental learning.
arXiv Detail & Related papers (2023-12-07T17:16:30Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.<n>We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Experimental quantum key distribution certified by Bell's theorem [0.0]
cryptographic key exchange protocols traditionally rely on computational conjectures to provide security against eavesdropping attacks.
quantum key distribution protocols provide information-theoretic security against such attacks.
However, quantum protocols are subject to a new class of attacks exploiting implementation defects in the physical devices involved.
We present here the experimental realisation of a complete quantum key distribution protocol immune to these vulnerabilities.
arXiv Detail & Related papers (2021-09-29T17:52:48Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.