Quantum Scheme for Private Set Intersection and Union Cardinality based on Quantum Homomorphic Encryption
- URL: http://arxiv.org/abs/2412.01032v1
- Date: Mon, 02 Dec 2024 01:31:06 GMT
- Title: Quantum Scheme for Private Set Intersection and Union Cardinality based on Quantum Homomorphic Encryption
- Authors: Chong-Qiang Ye, Jian Li, Tianyu Ye, Xiaoyu Chen,
- Abstract summary: A novel quantum private set intersection and union cardinality protocol is proposed, accompanied by the corresponding quantum circuits.
Based on quantum homomorphic encryption, the protocol allows the intersection and union cardinality of users' private sets to be computed on quantum-encrypted data.
- Score: 8.715631190576067
- License:
- Abstract: Private set intersection (PSI) and private set union (PSU) are the crucial primitives in secure multiparty computation protocols, which enable several participants to jointly compute the intersection and union of their private sets without revealing any additional information. Quantum homomorphic encryption (QHE) offers significant advantages in handling privacy-preserving computations. However, given the current limitations of quantum resources, developing efficient and feasible QHE-based protocols for PSI and PSU computations remains a critical challenge. In this work, a novel quantum private set intersection and union cardinality protocol is proposed, accompanied by the corresponding quantum circuits. Based on quantum homomorphic encryption, the protocol allows the intersection and union cardinality of users' private sets to be computed on quantum-encrypted data with the assistance of a semi-honest third party. By operating on encrypted quantum states, it effectively mitigates the risk of original information leakage. Furthermore, the protocol requires only simple Pauli and CNOT operations, avoiding the use of complex quantum manipulations (e.g., $T$ gate and phase rotation gate). Compared to related protocols, this approach offers advantages in feasibility and privacy protection.
Related papers
- Quantum Homogenization as a Quantum Steady State Protocol on NISQ Hardware [42.52549987351643]
Quantum homogenization is a reservoir-based quantum state approximation protocol.
We extend the standard quantum homogenization protocol to the dynamically-equivalent ($mathttSWAP$)$alpha$ formulation.
We show that our proposed protocol yields a completely positive, trace preserving (CPTP) map under which the code subspace is correctable.
arXiv Detail & Related papers (2024-12-19T05:50:54Z) - Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Single-Round Proofs of Quantumness from Knowledge Assumptions [41.94295877935867]
A proof of quantumness is an efficiently verifiable interactive test that an efficient quantum computer can pass.
Existing single-round protocols require large quantum circuits, whereas multi-round ones use smaller circuits but require experimentally challenging mid-circuit measurements.
We construct efficient single-round proofs of quantumness based on existing knowledge assumptions.
arXiv Detail & Related papers (2024-05-24T17:33:10Z) - Privacy-preserving quantum federated learning via gradient hiding [5.543544712471747]
This paper presents innovative quantum protocols with quantum communication designed to address the privacy problem.
In contrast to previous works that leverage expressive variational quantum circuits or differential privacy techniques, we consider gradient information concealment using quantum states.
We propose two distinct FL protocols, one based on private inner-product estimation and the other on incremental learning.
arXiv Detail & Related papers (2023-12-07T17:16:30Z) - A Feasible Semi-quantum Private Comparison Based on Entanglement
Swapping of Bell States [5.548873288570182]
We propose a feasible semi-quantum private comparison protocol based on entanglement swapping of Bell states.
Security analysis shows that our protocol is resilient to both external and internal attacks.
Our proposed approach showcases the potential applications of entanglement swapping in the field of semi-quantum cryptography.
arXiv Detail & Related papers (2023-05-12T13:28:44Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Multi-party Semi-quantum Secret Sharing Protocol based on Measure-flip and Reflect Operations [1.3812010983144802]
Semi-quantum secret sharing (SQSS) protocols serve as fundamental frameworks in quantum secure multi-party computations.
This paper proposes a novel SQSS protocol based on multi-particle GHZ states.
arXiv Detail & Related papers (2021-09-03T08:52:17Z) - Delegating Multi-Party Quantum Computations vs. Dishonest Majority in
Two Quantum Rounds [0.0]
Multi-Party Quantum Computation (MPQC) has attracted a lot of attention as a potential killer-app for quantum networks.
We present a composable protocol achieving blindness and verifiability even in the case of a single honest client.
arXiv Detail & Related papers (2021-02-25T15:58:09Z) - Two-party quantum private comparison based on eight-qubit entangled
state [0.7130302992490973]
The purpose of quantum private comparison (QPC) is to solve "Tierce problem" using quantum mechanics laws.
We consider for the first time the usefulness of eight-qubit entangled states for QPC by proposing a new protocol.
arXiv Detail & Related papers (2021-01-05T12:07:45Z) - Post-Quantum Multi-Party Computation [32.75732860329838]
We study multi-party computation for classical functionalities (in the plain model) with security against malicious-time quantum adversaries.
We assume superpolynomial quantum hardness of learning with errors (LWE), and quantum hardness of an LWE-based circular security assumption.
Along the way, we develop cryptographic primitives that may be of independent interest.
arXiv Detail & Related papers (2020-05-23T00:42:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.