Experimental quantum key distribution certified by Bell's theorem
- URL: http://arxiv.org/abs/2109.14600v2
- Date: Tue, 5 Sep 2023 21:19:00 GMT
- Title: Experimental quantum key distribution certified by Bell's theorem
- Authors: D. P. Nadlinger, P. Drmota, B. C. Nichol, G. Araneda, D. Main, R.
Srinivas, D. M. Lucas, C. J. Ballance, K. Ivanov, E. Y-Z. Tan, P. Sekatski,
R. L. Urbanke, R. Renner, N. Sangouard, and J-D. Bancal
- Abstract summary: cryptographic key exchange protocols traditionally rely on computational conjectures to provide security against eavesdropping attacks.
quantum key distribution protocols provide information-theoretic security against such attacks.
However, quantum protocols are subject to a new class of attacks exploiting implementation defects in the physical devices involved.
We present here the experimental realisation of a complete quantum key distribution protocol immune to these vulnerabilities.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cryptographic key exchange protocols traditionally rely on computational
conjectures such as the hardness of prime factorisation to provide security
against eavesdropping attacks. Remarkably, quantum key distribution protocols
like the one proposed by Bennett and Brassard provide information-theoretic
security against such attacks, a much stronger form of security unreachable by
classical means. However, quantum protocols realised so far are subject to a
new class of attacks exploiting implementation defects in the physical devices
involved, as demonstrated in numerous ingenious experiments. Following the
pioneering work of Ekert proposing the use of entanglement to bound an
adversary's information from Bell's theorem, we present here the experimental
realisation of a complete quantum key distribution protocol immune to these
vulnerabilities. We achieve this by combining theoretical developments on
finite-statistics analysis, error correction, and privacy amplification, with
an event-ready scheme enabling the rapid generation of high-fidelity
entanglement between two trapped-ion qubits connected by an optical fibre link.
The secrecy of our key is guaranteed device-independently: it is based on the
validity of quantum theory, and certified by measurement statistics observed
during the experiment. Our result shows that provably secure cryptography with
real-world devices is possible, and paves the way for further quantum
information applications based on the device-independence principle.
Related papers
- Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Unveiling Hidden Vulnerabilities in Quantum Systems by Expanding Attack Vectors through Heisenberg's Uncertainty Principle [0.0]
This study uncovers novel vulnerabilities within Quantum Key Distribution (QKD) protocols.
The newly identified vulnerabilities arise from the complex interaction between Bell Inequalities (BIs) and Hidden Variable Theories (HVTs)
arXiv Detail & Related papers (2024-09-27T06:18:36Z) - Simulations of distributed-phase-reference quantum key distribution protocols [0.1398098625978622]
Quantum key distribution protocols provide a secret key between two users with security guaranteed by the laws of quantum mechanics.
We perform simulations on the Interconnect platform to characterise the practical implementation of these devices.
We briefly describe and simulate some possible eavesdropping attempts, backflash attack, trojan-horse attack and detector-blinding attack exploiting the device imperfections.
arXiv Detail & Related papers (2024-06-13T13:19:04Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Hierarchical certification of nonclassical network correlations [50.32788626697182]
We derive linear and nonlinear Bell-like inequalities for networks, whose violation certifies the absence of a minimum number of classical sources in them.
We insert this assumption, which leads to results more amenable to certification in experiments.
arXiv Detail & Related papers (2023-06-27T18:00:01Z) - Quantum Public Key Distribution using Randomized Glauber States [0.0]
State-of-the-art Quantum Key Distribution (QKD) is based on the uncertainty principle of qubits on quantum measurements.
We propose a novel quantum key distribution mechanism over a pure optical channel using randomized Glauber states.
arXiv Detail & Related papers (2023-02-15T14:12:52Z) - Experimental cheat-sensitive quantum weak coin flipping [2.642406403099596]
Weak coin flipping (WCF) is a primitive that allows two mistrustful parties to agree on a random bit while they favor opposite outcomes.
We demonstrate how quantum resources can provide cheat sensitivity, whereby each party can detect a cheating opponent, and an honest party is never sanctioned.
arXiv Detail & Related papers (2022-11-07T11:34:48Z) - Certified Robustness of Quantum Classifiers against Adversarial Examples
through Quantum Noise [68.1992787416233]
We show that adding quantum random rotation noise can improve robustness in quantum classifiers against adversarial attacks.
We derive a certified robustness bound to enable quantum classifiers to defend against adversarial examples.
arXiv Detail & Related papers (2022-11-02T05:17:04Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - A coherence-witnessing game and applications to semi-device-independent
quantum key distribution [1.024113475677323]
We introduce a coherence-based, semi-device-independent, semi-quantum key distribution protocol built upon a noise-robust version of a coherence equality game.
Security is proven in the bounded quantum storage model, requiring users to implement only classical operations.
arXiv Detail & Related papers (2021-03-11T17:55:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.