SyLeR: A Framework for Explicit Syllogistic Legal Reasoning in Large Language Models
- URL: http://arxiv.org/abs/2504.04042v1
- Date: Sat, 05 Apr 2025 03:34:51 GMT
- Title: SyLeR: A Framework for Explicit Syllogistic Legal Reasoning in Large Language Models
- Authors: Kepu Zhang, Weijie Yu, Zhongxiang Sun, Jun Xu,
- Abstract summary: We propose SyLeR, a novel framework that empowers LLMs to engage in explicit syllogistic legal reasoning.<n>SyLeR integrates a tree-structured hierarchical retrieval mechanism to effectively combine relevant legal statutes and precedent cases.
- Score: 5.501226256903341
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Syllogistic reasoning is a fundamental aspect of legal decision-making, enabling logical conclusions by connecting general legal principles with specific case facts. Although existing large language models (LLMs) can generate responses to legal questions, they fail to perform explicit syllogistic reasoning, often producing implicit and unstructured answers that lack explainability and trustworthiness. To address this limitation, we propose SyLeR, a novel framework that empowers LLMs to engage in explicit syllogistic legal reasoning. SyLeR integrates a tree-structured hierarchical retrieval mechanism to effectively combine relevant legal statutes and precedent cases, forming comprehensive major premises. This is followed by a two-stage fine-tuning process: supervised fine-tuning warm-up establishes a foundational understanding of syllogistic reasoning, while reinforcement learning with a structure-aware reward mechanism refines the ability of the model to generate diverse logically sound and well-structured reasoning paths. We conducted extensive experiments across various dimensions, including in-domain and cross-domain user groups (legal laypersons and practitioners), multiple languages (Chinese and French), and different LLM backbones (legal-specific and open-domain LLMs). The results show that SyLeR significantly improves response accuracy and consistently delivers explicit, explainable, and trustworthy legal reasoning.
Related papers
- Elevating Legal LLM Responses: Harnessing Trainable Logical Structures and Semantic Knowledge with Legal Reasoning [19.477062052536887]
We propose the Logical-Semantic Integration Model (LSIM), a supervised framework that bridges semantic and logical coherence.<n>LSIM comprises three components: reinforcement learning predicts a structured fact-rule chain for each question, a trainable Deep Structured Semantic Model (DSSM) retrieves the most relevant candidate questions and in-answer learning generates the final answer.<n>Our experiments on a real-world legal dataset QA-validated through both automated metrics and human evaluation-demonstrate that LSIM significantly enhances accuracy and reliability compared to existing methods.
arXiv Detail & Related papers (2025-02-11T19:33:07Z) - RuleArena: A Benchmark for Rule-Guided Reasoning with LLMs in Real-World Scenarios [58.90106984375913]
RuleArena is a novel and challenging benchmark designed to evaluate the ability of large language models (LLMs) to follow complex, real-world rules in reasoning.
Covering three practical domains -- airline baggage fees, NBA transactions, and tax regulations -- RuleArena assesses LLMs' proficiency in handling intricate natural language instructions.
arXiv Detail & Related papers (2024-12-12T06:08:46Z) - Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
We propose a framework that integrates causal representation learning with large language models.
This framework learns a causal world model, with causal variables linked to natural language expressions.
We evaluate the framework on causal inference and planning tasks across temporal scales and environmental complexities.
arXiv Detail & Related papers (2024-10-25T18:36:37Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
We introduce a novel structure-oriented analysis method to help Large Language Models (LLMs) better understand a question.
To further improve the reliability in complex question-answering tasks, we propose a multi-agent reasoning system, Structure-oriented Autonomous Reasoning Agents (SARA)
Extensive experiments verify the effectiveness of the proposed reasoning system. Surprisingly, in some cases, the system even surpasses few-shot methods.
arXiv Detail & Related papers (2024-10-18T05:30:33Z) - Can Large Language Models Grasp Legal Theories? Enhance Legal Reasoning with Insights from Multi-Agent Collaboration [27.047809869136458]
Large Language Models (LLMs) could struggle to fully understand legal theories and perform legal reasoning tasks.
We introduce a challenging task (confusing charge prediction) to better evaluate LLMs' understanding of legal theories and reasoning capabilities.
We also propose a novel framework: Multi-Agent framework for improving complex Legal Reasoning capability.
arXiv Detail & Related papers (2024-10-03T14:15:00Z) - Proof of Thought : Neurosymbolic Program Synthesis allows Robust and Interpretable Reasoning [1.3003982724617653]
Large Language Models (LLMs) have revolutionized natural language processing, yet they struggle with inconsistent reasoning.
This research introduces Proof of Thought, a framework that enhances the reliability and transparency of LLM outputs.
Key contributions include a robust type system with sort management for enhanced logical integrity, explicit representation of rules for clear distinction between factual and inferential knowledge.
arXiv Detail & Related papers (2024-09-25T18:35:45Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
Current research enhances the reasoning performance of Large Language Models (LLMs) by sampling multiple reasoning chains and ensembling based on the answer frequency.
This approach fails in scenarios where the correct answers are in the minority.
We introduce a hierarchical reasoning aggregation framework AoR, which selects answers based on the evaluation of reasoning chains.
arXiv Detail & Related papers (2024-05-21T17:12:19Z) - Logic Rules as Explanations for Legal Case Retrieval [9.240902132139187]
We propose a framework that conducts reasoning on the matching of legal cases through learning case-level and law-level logic rules.
Benefiting from the logic and interpretable nature of the logic rules, NS-LCR is equipped with built-in faithful explainability.
arXiv Detail & Related papers (2024-03-03T09:22:21Z) - Can LLMs Reason with Rules? Logic Scaffolding for Stress-Testing and Improving LLMs [87.34281749422756]
Large language models (LLMs) have achieved impressive human-like performance across various reasoning tasks.
However, their mastery of underlying inferential rules still falls short of human capabilities.
We propose a logic scaffolding inferential rule generation framework, to construct an inferential rule base, ULogic.
arXiv Detail & Related papers (2024-02-18T03:38:51Z) - FaithLM: Towards Faithful Explanations for Large Language Models [67.29893340289779]
Large Language Models (LLMs) have become proficient in addressing complex tasks by leveraging their internal knowledge and reasoning capabilities.
The black-box nature of these models complicates the task of explaining their decision-making processes.
We introduce FaithLM to explain the decision of LLMs with natural language (NL) explanations.
arXiv Detail & Related papers (2024-02-07T09:09:14Z) - A Principled Framework for Knowledge-enhanced Large Language Model [58.1536118111993]
Large Language Models (LLMs) are versatile, yet they often falter in tasks requiring deep and reliable reasoning.
This paper introduces a rigorously designed framework for creating LLMs that effectively anchor knowledge and employ a closed-loop reasoning process.
arXiv Detail & Related papers (2023-11-18T18:10:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.