FISH-Tuning: Enhancing PEFT Methods with Fisher Information
- URL: http://arxiv.org/abs/2504.04050v3
- Date: Sun, 25 May 2025 14:11:56 GMT
- Title: FISH-Tuning: Enhancing PEFT Methods with Fisher Information
- Authors: Kang Xue, Ming Dong, Xinhui Tu, Tingting He,
- Abstract summary: FISH Mask is a selection-based PEFT technique that identifies a critical subset of pre-trained parameters using approximate Fisher information.<n>We propose textbfFISH-Tuning, a novel approach that incorporates FISH Mask into such PEFT methods, including LoRA, Adapter, and their variants.
- Score: 3.9274736061387854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid growth in the parameter size of Large Language Models (LLMs) has spurred the development of Parameter-Efficient Fine-Tuning (PEFT) methods to mitigate the substantial computational costs of fine-tuning. Among these, Fisher Induced Sparse uncHanging (FISH) Mask is a selection-based PEFT technique that identifies a critical subset of pre-trained parameters using approximate Fisher information. While addition-based and reparameterization-based PEFT methods like LoRA and Adapter already fine-tune only a small number of parameters, the newly introduced parameters within these methods themselves present an opportunity for further optimization. Selectively fine-tuning only the most impactful among these new parameters could further reduce resource consumption while maintaining, or even improving, fine-tuning effectiveness. In this paper, we propose \textbf{FISH-Tuning}, a novel approach that incorporates FISH Mask into such PEFT methods, including LoRA, Adapter, and their variants. By leveraging Fisher information to identify and update only the most significant parameters within these added or reparameterized components, FISH-Tuning aims to achieve superior performance without increasing training time or inference latency compared to the vanilla PEFT methods. Experimental results across various datasets and pre-trained models demonstrate that FISH-Tuning consistently outperforms the vanilla PEFT methods when using the same proportion of trainable parameters. Code is available at https://anonymous.4open.science/r/FISH-Tuning-6F7C.
Related papers
- ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoRE is a novel PETL method that reuses the hypercomplex parameterized space constructed by Kronecker product to Aggregate Low Rank Experts.<n>Thanks to the artful design, ALoRE maintains negligible extra parameters and can be effortlessly merged into the frozen backbone.
arXiv Detail & Related papers (2024-12-11T12:31:30Z) - FisherMask: Enhancing Neural Network Labeling Efficiency in Image Classification Using Fisher Information [2.762397703396293]
FisherMask is a Fisher information-based active learning (AL) approach that identifies key network parameters by masking them.
Our experiments demonstrate that FisherMask significantly outperforms state-of-the-art methods on diverse datasets.
arXiv Detail & Related papers (2024-11-08T18:10:46Z) - Preserving Pre-trained Representation Space: On Effectiveness of Prefix-tuning for Large Multi-modal Models [24.62337386603331]
Large Multi-modal Models (LMMs) are revolutionizing the way machines interact with the world.
To adapt LMMs for downstream tasks, parameter-efficient fine-tuning (PEFT) has gained popularity.
This paper focuses on the strengths and weaknesses of each tuning strategy, shifting the focus from the efficiency typically associated with these approaches.
arXiv Detail & Related papers (2024-10-29T07:55:50Z) - HUT: A More Computation Efficient Fine-Tuning Method With Hadamard Updated Transformation [6.954348219088321]
Fine-tuning pre-trained language models for downstream tasks has achieved impressive results in NLP.
Fine-tuning all parameters becomes impractical due to the rapidly increasing size of model parameters.
We propose the direct Updated Transformation (UT) paradigm, which constructs a transformation directly from the original to the updated parameters.
arXiv Detail & Related papers (2024-09-20T13:42:17Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.<n>We propose a novel model fine-tuning method to make full use of these ineffective parameters.<n>Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - GIFT-SW: Gaussian noise Injected Fine-Tuning of Salient Weights for LLMs [51.02233412547456]
We introduce a novel PEFT method, called Gaussian noise Injected Fine Tuning of Salient Weights (GIFT-SW)
Our method updates only salient columns, while injecting Gaussian noise into non-salient ones.
Experiments with LLaMA models demonstrate that GIFT-SW outperforms full fine-tuning and modern PEFT methods under the same computational budget.
arXiv Detail & Related papers (2024-08-27T14:41:14Z) - Step-by-Step Unmasking for Parameter-Efficient Fine-tuning of Large Language Models [18.877891285367216]
We introduce $textID3$, a novel selective PEFT method that calculates parameter importance continually.<n>We analytically show that $textID3$ reduces the number of gradient updates by a factor of two, enhancing computational efficiency.
arXiv Detail & Related papers (2024-08-26T17:58:53Z) - ETHER: Efficient Finetuning of Large-Scale Models with Hyperplane Reflections [59.839926875976225]
We propose the ETHER transformation family, which performs Efficient fineTuning via HypErplane Reflections.
In particular, we introduce ETHER and its relaxation ETHER+, which match or outperform existing PEFT methods with significantly fewer parameters.
arXiv Detail & Related papers (2024-05-30T17:26:02Z) - Advancing Parameter Efficiency in Fine-tuning via Representation Editing [41.81020951061438]
We propose a novel fine-tuning approach for neural models, named Representation EDiting (RED)
RED modifies the representations generated at some layers through the application of scaling and biasing operations.
Remarkably, RED achieves results comparable or superior to both full parameter fine-tuning and other PEFT methods.
arXiv Detail & Related papers (2024-02-23T08:21:02Z) - Parameter-Efficient Fine-Tuning Methods for Pretrained Language Models:
A Critical Review and Assessment [12.674032145667763]
We present a comprehensive and systematic review of Efficient Fine-Tuning (PEFT) methods for pretrained language models (PLMs)
PEFT offers an effective solution by reducing the number of fine-tuning parameters and memory usage while achieving comparable performance to full fine-tuning.
We conduct experiments using several representative PEFT methods to better understand their effectiveness in parameter efficiency and memory efficiency.
arXiv Detail & Related papers (2023-12-19T13:31:24Z) - Exploring the Impact of Model Scaling on Parameter-Efficient Tuning [100.61202305296275]
Scaling-efficient tuning (PET) methods can effectively drive extremely large pre-trained language models (PLMs)
In small PLMs, there are usually noticeable performance differences among PET methods.
We introduce a more flexible PET method called Arbitrary PET (APET) method.
arXiv Detail & Related papers (2023-06-04T10:10:54Z) - LoRAPrune: Structured Pruning Meets Low-Rank Parameter-Efficient Fine-Tuning [56.88751562302793]
Low-rank adaption (LoRA) has emerged to fine-tune large language models (LLMs)
LoRAPrune is a new framework that delivers an accurate structured pruned model in a highly memory-efficient manner.
LoRAPrune achieves a reduction in perplexity by 4.81 on WikiText2 and 3.46 on PTB, while also decreasing memory usage by 52.6%.
arXiv Detail & Related papers (2023-05-28T15:15:48Z) - Parameter-Efficient Fine-Tuning without Introducing New Latency [7.631596468553607]
We introduce a novel adapter technique that directly applies the adapter to pre-trained parameters instead of the hidden representation.
Our proposed method attains a new state-of-the-art outcome in terms of both performance and storage efficiency, storing only 0.03% parameters of full fine-tuning.
arXiv Detail & Related papers (2023-05-26T08:44:42Z) - Empirical Analysis of the Strengths and Weaknesses of PEFT Techniques
for LLMs [1.867982979635437]
We provide a benchmark of various PEFT techniques and evaluate model performance across different data scales.
Contrary to popular belief, we empirically prove that PEFT techniques converge slower than full tuning in low data scenarios.
We further optimize these PEFT techniques by selectively choosing which parts of the model to train, and find that these techniques can be applied with significantly fewer parameters.
arXiv Detail & Related papers (2023-04-28T17:39:49Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
Fine-tuning large pre-trained language models on downstream tasks has become an important paradigm in NLP.
We propose AdaLoRA, which adaptively allocates the parameter budget among weight matrices according to their importance score.
We conduct extensive experiments with several pre-trained models on natural language processing, question answering, and natural language generation to validate the effectiveness of AdaLoRA.
arXiv Detail & Related papers (2023-03-18T22:36:25Z) - Sensitivity-Aware Visual Parameter-Efficient Fine-Tuning [91.5113227694443]
We propose a novel visual.
sensuous-aware fine-Tuning (SPT) scheme.
SPT allocates trainable parameters to task-specific important positions.
Experiments on a wide range of downstream recognition tasks show that our SPT is complementary to the existing PEFT methods.
arXiv Detail & Related papers (2023-03-15T12:34:24Z) - Scaling & Shifting Your Features: A New Baseline for Efficient Model
Tuning [126.84770886628833]
Existing finetuning methods either tune all parameters of the pretrained model (full finetuning) or only tune the last linear layer (linear probing)
We propose a new parameter-efficient finetuning method termed as SSF, representing that researchers only need to Scale and Shift the deep Features extracted by a pre-trained model to catch up with the performance full finetuning.
arXiv Detail & Related papers (2022-10-17T08:14:49Z) - Towards a Unified View on Visual Parameter-Efficient Transfer Learning [96.99924127527002]
We propose a framework with a unified view called visual-PETL (V-PETL) to investigate the different aspects affecting the trade-off.
An effective scheme Swin-BAPAT derived from the proposed V-PETL framework achieves significantly better performance than the state-of-the-art AdaptFormer-Swin.
arXiv Detail & Related papers (2022-10-03T09:54:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.