Overcoming the Identity Mapping Problem in Self-Supervised Hyperspectral Anomaly Detection
- URL: http://arxiv.org/abs/2504.04115v1
- Date: Sat, 05 Apr 2025 09:12:25 GMT
- Title: Overcoming the Identity Mapping Problem in Self-Supervised Hyperspectral Anomaly Detection
- Authors: Yongchuan Cui, Jinhe Zhang, Peng Liu, Weijing Song, Yi Zeng,
- Abstract summary: Self-supervised Hyperspectral Anomaly Detection (HAD) models often suffer from the Identity Mapping Problem (IMP)<n>IMP manifests as a tendency for the model to overfit to the entire image, particularly with increasing network complexity or prolonged training iterations.<n>We introduce three solutions: superpixel pooling and uppooling for perturbation, error-adaptive convolution for reconstruction, and online background pixel mining for regularization.
- Score: 6.547234350675682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The surge of deep learning has catalyzed considerable progress in self-supervised Hyperspectral Anomaly Detection (HAD). The core premise for self-supervised HAD is that anomalous pixels are inherently more challenging to reconstruct, resulting in larger errors compared to the background. However, owing to the powerful nonlinear fitting capabilities of neural networks, self-supervised models often suffer from the Identity Mapping Problem (IMP). The IMP manifests as a tendency for the model to overfit to the entire image, particularly with increasing network complexity or prolonged training iterations. Consequently, the whole image can be precisely reconstructed, and even the anomalous pixels exhibit imperceptible errors, making them difficult to detect. Despite the proposal of several models aimed at addressing the IMP-related issues, a unified descriptive framework and validation of solutions for IMP remain lacking. In this paper, we conduct an in-depth exploration to IMP, and summarize a unified framework that describes IMP from the perspective of network optimization, which encompasses three aspects: perturbation, reconstruction, and regularization. Correspondingly, we introduce three solutions: superpixel pooling and uppooling for perturbation, error-adaptive convolution for reconstruction, and online background pixel mining for regularization. With extensive experiments being conducted to validate the effectiveness, it is hoped that our work will provide valuable insights and inspire further research for self-supervised HAD. Code: \url{https://github.com/yc-cui/Super-AD}.
Related papers
- Limited-angle x-ray nano-tomography with machine-learning enabled iterative reconstruction engine [0.820550741199358]
We propose an approach dubbed Perception Fused Iterative Tomography Reconstruction Engine.<n>It integrates a convolutional neural network (CNN) with perceptional knowledge as a smart regularizer into an iterative solving engine.<n>We demonstrate the effectiveness of the proposed approach using various experimental datasets obtained with different x-ray microscopy techniques.
arXiv Detail & Related papers (2025-03-25T01:14:16Z) - InDeed: Interpretable image deep decomposition with guaranteed generalizability [28.595151003310452]
Image decomposition aims to analyze an image into elementary components.<n>Deep learning can be powerful for such tasks, but its combination with a focus on interpretability and generalizability is rarely explored.<n>We introduce a novel framework for interpretable deep image decomposition, combining hierarchical Bayesian modeling and deep learning.
arXiv Detail & Related papers (2025-01-02T07:58:26Z) - Orthogonal Subspace Decomposition for Generalizable AI-Generated Image Detection [58.87142367781417]
A naively trained detector tends to favor overfitting to the limited and monotonous fake patterns, causing the feature space to become highly constrained and low-ranked.<n>One potential remedy is incorporating the pre-trained knowledge within the vision foundation models to expand the feature space.<n>By freezing the principal components and adapting only the remained components, we preserve the pre-trained knowledge while learning forgery-related patterns.
arXiv Detail & Related papers (2024-11-23T19:10:32Z) - Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection [1.0358639819750703]
In unsupervised anomaly detection (UAD) research, it is necessary to develop a computationally efficient and scalable solution.
We revisit the reconstruction-by-inpainting approach and rethink to improve it by analyzing strengths and weaknesses.
We propose Feature Attenuation of Defective Representation (FADeR) that only employs two layers which attenuates feature information of anomaly reconstruction.
arXiv Detail & Related papers (2024-07-05T15:44:53Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Robust Single Image Dehazing Based on Consistent and Contrast-Assisted
Reconstruction [95.5735805072852]
We propose a novel density-variational learning framework to improve the robustness of the image dehzing model.
Specifically, the dehazing network is optimized under the consistency-regularized framework.
Our method significantly surpasses the state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-29T08:11:04Z) - A-ESRGAN: Training Real-World Blind Super-Resolution with Attention
U-Net Discriminators [0.0]
Blind image super-resolution(SR) is a long-standing task in CV that aims to restore low-resolution images suffering from unknown and complex distortions.
We present A-ESRGAN, a GAN model for blind SR tasks featuring an attention U-Net based, multi-scale discriminator.
arXiv Detail & Related papers (2021-12-19T02:50:23Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
We present a novel contrastive learning strategy called it Proactive Pseudo-Intervention (PPI)
PPI leverages proactive interventions to guard against image features with no causal relevance.
We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability.
arXiv Detail & Related papers (2020-12-06T20:30:26Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z) - Enhancing Perceptual Loss with Adversarial Feature Matching for
Super-Resolution [5.258555266148511]
Single image super-resolution (SISR) is an ill-posed problem with an indeterminate number of valid solutions.
We show that the root cause of these pattern artifacts can be traced back to a mismatch between the pre-training objective of perceptual loss and the super-resolved objective.
arXiv Detail & Related papers (2020-05-15T12:36:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.