Deep Manifold Learning for Reading Comprehension and Logical Reasoning
Tasks with Polytuplet Loss
- URL: http://arxiv.org/abs/2304.01046v4
- Date: Fri, 22 Dec 2023 22:18:54 GMT
- Title: Deep Manifold Learning for Reading Comprehension and Logical Reasoning
Tasks with Polytuplet Loss
- Authors: Jeffrey Lu, Ivan Rodriguez
- Abstract summary: The current trend in developing machine learning models for reading comprehension and logical reasoning tasks is focused on improving the models' abilities to understand and utilize logical rules.
This work focuses on providing a novel loss function and accompanying model architecture that has more interpretable components than some other models.
Our strategy involves emphasizing relative accuracy over absolute accuracy and can theoretically produce the correct answer with incomplete knowledge.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The current trend in developing machine learning models for reading
comprehension and logical reasoning tasks is focused on improving the models'
abilities to understand and utilize logical rules. This work focuses on
providing a novel loss function and accompanying model architecture that has
more interpretable components than some other models by representing a common
strategy employed by humans when given reading comprehension and logical
reasoning tasks. Our strategy involves emphasizing relative accuracy over
absolute accuracy and can theoretically produce the correct answer with
incomplete knowledge. We examine the effectiveness of this strategy to solve
reading comprehension and logical reasoning questions. The models were
evaluated on the ReClor dataset, a challenging reading comprehension and
logical reasoning benchmark. We propose the polytuplet loss function, which
forces prioritization of learning the relative correctness of answer choices
over learning the true accuracy of each choice. Our results indicate that
models employing polytuplet loss outperform existing baseline models, though
further research is required to quantify the benefits it may present.
Related papers
- Neural Probabilistic Logic Learning for Knowledge Graph Reasoning [10.473897846826956]
This paper aims to design a reasoning framework that achieves accurate reasoning on knowledge graphs.
We introduce a scoring module that effectively enhances the expressive power of embedding networks.
We improve the interpretability of the model by incorporating a Markov Logic Network based on variational inference.
arXiv Detail & Related papers (2024-07-04T07:45:46Z) - Learning Latent Graph Structures and their Uncertainty [63.95971478893842]
Graph Neural Networks (GNNs) use relational information as an inductive bias to enhance the model's accuracy.
As task-relevant relations might be unknown, graph structure learning approaches have been proposed to learn them while solving the downstream prediction task.
arXiv Detail & Related papers (2024-05-30T10:49:22Z) - Exploring the Trade-off Between Model Performance and Explanation Plausibility of Text Classifiers Using Human Rationales [3.242050660144211]
Saliency post-hoc explainability methods are important tools for understanding increasingly complex NLP models.
We present a methodology for incorporating rationales, which are text annotations explaining human decisions, into text classification models.
arXiv Detail & Related papers (2024-04-03T22:39:33Z) - Comparing Inferential Strategies of Humans and Large Language Models in Deductive Reasoning [25.732397636695882]
We show that large language models (LLMs) display reasoning patterns akin to those observed in humans.
Our research demonstrates that the architecture and scale of the model significantly affect its preferred method of reasoning.
arXiv Detail & Related papers (2024-02-20T12:58:14Z) - APOLLO: A Simple Approach for Adaptive Pretraining of Language Models
for Logical Reasoning [73.3035118224719]
We propose APOLLO, an adaptively pretrained language model that has improved logical reasoning abilities.
APOLLO performs comparably on ReClor and outperforms baselines on LogiQA.
arXiv Detail & Related papers (2022-12-19T07:40:02Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - MERIt: Meta-Path Guided Contrastive Learning for Logical Reasoning [63.50909998372667]
We propose MERIt, a MEta-path guided contrastive learning method for logical ReasonIng of text.
Two novel strategies serve as indispensable components of our method.
arXiv Detail & Related papers (2022-03-01T11:13:00Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
We study contrastive learning on the wearable-based activity recognition task.
This paper presents an open-source PyTorch library textttCL-HAR, which can serve as a practical tool for researchers.
arXiv Detail & Related papers (2022-02-12T06:10:15Z) - MPLR: a novel model for multi-target learning of logical rules for
knowledge graph reasoning [5.499688003232003]
We study the problem of learning logic rules for reasoning on knowledge graphs for completing missing factual triplets.
We propose a model called MPLR that improves the existing models to fully use training data and multi-target scenarios are considered.
Experimental results empirically demonstrate that our MPLR model outperforms state-of-the-art methods on five benchmark datasets.
arXiv Detail & Related papers (2021-12-12T09:16:00Z) - A Mathematical Analysis of Learning Loss for Active Learning in
Regression [2.792030485253753]
This paper develops a foundation for Learning Loss which enables us to propose a novel modification we call LearningLoss++.
We show that gradients are crucial in interpreting how Learning Loss works, with rigorous analysis and comparison of the gradients between Learning Loss and LearningLoss++.
We also propose a convolutional architecture that combines features at different scales to predict the loss.
We show that LearningLoss++ outperforms in identifying scenarios where the model is likely to perform poorly, which on model refinement translates into reliable performance in the open world.
arXiv Detail & Related papers (2021-04-19T13:54:20Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
We propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models.
Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model.
Experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions.
arXiv Detail & Related papers (2020-05-13T04:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.