論文の概要: Randomised Postiterations for Calibrated BayesCG
- arxiv url: http://arxiv.org/abs/2504.04247v1
- Date: Sat, 05 Apr 2025 18:43:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:13:39.284394
- Title: Randomised Postiterations for Calibrated BayesCG
- Title(参考訳): Calibrated BayesCGにおけるランダムな姿勢
- Authors: Niall Vyas, Disha Hegde, Jon Cockayne,
- Abstract要約: ベイズCG後部の校正を向上する新しいランダム化ポストイテレーション戦略を提案する。
数値実験により, 合成問題と逆問題の両方において, 提案手法の有効性が示された。
- 参考スコア(独自算出の注目度): 1.1470070927586018
- License:
- Abstract: The Bayesian conjugate gradient method offers probabilistic solutions to linear systems but suffers from poor calibration, limiting its utility in uncertainty quantification tasks. Recent approaches leveraging postiterations to construct priors have improved computational properties but failed to correct calibration issues. In this work, we propose a novel randomised postiteration strategy that enhances the calibration of the BayesCG posterior while preserving its favourable convergence characteristics. We present theoretical guarantees for the improved calibration, supported by results on the distribution of posterior errors. Numerical experiments demonstrate the efficacy of the method in both synthetic and inverse problem settings, showing enhanced uncertainty quantification and better propagation of uncertainties through computational pipelines.
- Abstract(参考訳): ベイズ共役勾配法は線形系に対する確率論的解を提供するが、キャリブレーションに乏しく、不確実な定量化タスクにおいてその有用性を制限している。
ポストイテレーションを利用して事前構築する最近のアプローチは、計算特性を改善したが、校正問題の修正には失敗した。
本研究では,ベイズCGの後部キャリブレーションを向上し,コンバージェンス特性を良好に保ちつつ,新たなランダム化ポストイテレーション戦略を提案する。
後部誤差の分布に関する結果から, キャリブレーションの改善を理論的に保証する。
数値実験により,不確かさの定量化が向上し,不確かさの伝播性も向上した。
関連論文リスト
- Feature Clipping for Uncertainty Calibration [24.465567005078135]
現代のディープニューラルネットワーク(DNN)は、しばしば過剰な自信に悩まされ、誤校正につながる。
この問題に対処するために,特徴クリッピング(FC)と呼ばれるポストホックキャリブレーション手法を提案する。
FCは特定の閾値に特徴値をクリップし、高い校正誤差サンプルのエントロピーを効果的に増加させる。
論文 参考訳(メタデータ) (2024-10-16T06:44:35Z) - Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
実際のデータストリームは、分散シフトやフィードバックループ、敵アクターによって予測不可能に変化する可能性がある。
データがどのように進化するかに関わらず、有効な不確実性推定を保証するための予測フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-27T21:46:42Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
カーネルベースのキャリブレーションメトリクスを導入し、分類と回帰の両方で一般的なキャリブレーションの形式を統一・一般化する。
これらの指標は、異なるサンプル推定を許容しており、キャリブレーションの目的を経験的リスク最小化に組み込むのが容易である。
決定タスクにキャリブレーションメトリクスを調整し、正確な損失推定を行ない、後悔しない決定を行うための直感的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-10-31T06:19:40Z) - Causal isotonic calibration for heterogeneous treatment effects [0.5249805590164901]
異種治療効果の予測因子を校正する新しい非パラメトリック手法である因果等方性キャリブレーションを提案する。
また、データ効率の良いキャリブレーションの変種であるクロスキャリブレーションを導入し、ホールドアウトキャリブレーションセットの必要性を排除した。
論文 参考訳(メタデータ) (2023-02-27T18:07:49Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
キャリブレーションされたモデルを設計するための最先端のアプローチは、ガウス過程の後方分散を膨らませることに依存している。
本稿では,バニラガウス過程の後方分散にインスパイアされた計算を用いて,予測量子化を生成するキャリブレーション手法を提案する。
我々のアプローチは合理的な仮定の下で校正されたモデルが得られることを示す。
論文 参考訳(メタデータ) (2023-02-23T12:17:36Z) - Parameterized Temperature Scaling for Boosting the Expressive Power in
Post-Hoc Uncertainty Calibration [57.568461777747515]
我々は新しいキャリブレーション手法であるパラメタライズド温度スケーリング(PTS)を導入する。
最新のポストホックキャリブレータの精度保持性能は、その本質的な表現力によって制限されることを実証します。
当社の新しい精度保存手法が,多数のモデルアーキテクチャやデータセット,メトリクスにおいて,既存のアルゴリズムを一貫して上回っていることを示す。
論文 参考訳(メタデータ) (2021-02-24T10:18:30Z) - Post-hoc Uncertainty Calibration for Domain Drift Scenarios [46.88826364244423]
既存のポストホックキャリブレーション手法は、ドメインシフト下での過信予測を高い精度で得ることを示した。
ポストホックキャリブレーションステップを実行する前に、検証セットのサンプルに摂動を適用する簡単な戦略を紹介します。
論文 参考訳(メタデータ) (2020-12-20T18:21:13Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
ドメインシフト下でのキャリブレーションの問題を導入し、それに対処するための重要サンプリングに基づくアプローチを提案する。
実世界のデータセットと合成データセットの両方において,本手法の有効性を評価し検討した。
論文 参考訳(メタデータ) (2020-06-29T21:50:07Z) - Calibration of Neural Networks using Splines [51.42640515410253]
キャリブレーション誤差の測定は、2つの経験的分布を比較します。
古典的コルモゴロフ・スミルノフ統計テスト(KS)にインスパイアされたビンニングフリーキャリブレーション尺度を導入する。
提案手法は,KS誤差に対する既存の手法と,他の一般的なキャリブレーション手法とを一貫して比較する。
論文 参考訳(メタデータ) (2020-06-23T07:18:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。