Beyond the Hype: Embeddings vs. Prompting for Multiclass Classification Tasks
- URL: http://arxiv.org/abs/2504.04277v2
- Date: Wed, 09 Apr 2025 17:15:47 GMT
- Title: Beyond the Hype: Embeddings vs. Prompting for Multiclass Classification Tasks
- Authors: Marios Kokkodis, Richard Demsyn-Jones, Vijay Raghavan,
- Abstract summary: We build embeddings-based softmax models that predict the professional category associated with each problem description.<n>We compare against prompts that ask state-of-the-art LLM models to solve the same problem.<n>We find that the embeddings approach outperforms the best LLM prompts in terms of accuracy, calibration, latency, and financial cost.
- Score: 0.8192907805418581
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Are traditional classification approaches irrelevant in this era of AI hype? We show that there are multiclass classification problems where predictive models holistically outperform LLM prompt-based frameworks. Given text and images from home-service project descriptions provided by Thumbtack customers, we build embeddings-based softmax models that predict the professional category (e.g., handyman, bathroom remodeling) associated with each problem description. We then compare against prompts that ask state-of-the-art LLM models to solve the same problem. We find that the embeddings approach outperforms the best LLM prompts in terms of accuracy, calibration, latency, and financial cost. In particular, the embeddings approach has 49.5% higher accuracy than the prompting approach, and its superiority is consistent across text-only, image-only, and text-image problem descriptions. Furthermore, it yields well-calibrated probabilities, which we later use as confidence signals to provide contextualized user experience during deployment. On the contrary, prompting scores are overly uninformative. Finally, the embeddings approach is 14 and 81 times faster than prompting in processing images and text respectively, while under realistic deployment assumptions, it can be up to 10 times cheaper. Based on these results, we deployed a variation of the embeddings approach, and through A/B testing we observed performance consistent with our offline analysis. Our study shows that for multiclass classification problems that can leverage proprietary datasets, an embeddings-based approach may yield unequivocally better results. Hence, scientists, practitioners, engineers, and business leaders can use our study to go beyond the hype and consider appropriate predictive models for their classification use cases.
Related papers
- Improving Preference Extraction In LLMs By Identifying Latent Knowledge Through Classifying Probes [20.20764453136706]
Large Language Models (LLMs) are often used as automated judges to evaluate text.<n>We propose using linear classifying probes, trained by leveraging differences between contrasting pairs of prompts, to access latent knowledge and extract more accurate preferences.
arXiv Detail & Related papers (2025-03-22T12:35:25Z) - SPARC: Score Prompting and Adaptive Fusion for Zero-Shot Multi-Label Recognition in Vision-Language Models [74.40683913645731]
Zero-shot multi-label recognition (MLR) with Vision-Language Models (VLMs) faces significant challenges without training data, model tuning, or architectural modifications.
Our work proposes a novel solution treating VLMs as black boxes, leveraging scores without training data or ground truth.
Analysis of these prompt scores reveals VLM biases and AND''/OR' signal ambiguities, notably that maximum scores are surprisingly suboptimal compared to second-highest scores.
arXiv Detail & Related papers (2025-02-24T07:15:05Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
We propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Breaking the Ceiling of the LLM Community by Treating Token Generation as a Classification for Ensembling [3.873482175367558]
In this paper, we treat the Generation of each token by Large Language Model (LLM) as a Classification (GaC) for ensembling.
In experiments, we ensemble state-of-the-art LLMs on several benchmarks, including exams, mathematics and reasoning, and observe that our method breaks the existing community performance ceiling.
arXiv Detail & Related papers (2024-06-18T13:17:26Z) - Mitigating Boundary Ambiguity and Inherent Bias for Text Classification in the Era of Large Language Models [24.085614720512744]
This study shows that large language models (LLMs) are vulnerable to changes in the number and arrangement of options in text classification.
Key bottleneck arises from ambiguous decision boundaries and inherent biases towards specific tokens and positions.
Our approach is grounded in the empirical observation that pairwise comparisons can effectively alleviate boundary ambiguity and inherent bias.
arXiv Detail & Related papers (2024-06-11T06:53:19Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Can Better Text Semantics in Prompt Tuning Improve VLM Generalization? [28.041879000565874]
We introduce a prompt-tuning method that leverages class descriptions obtained from Large Language Models.
Our approach constructs part-level description-guided image and text features, which are subsequently aligned to learn more generalizable prompts.
Our comprehensive experiments conducted across 11 benchmark datasets show that our method outperforms established methods.
arXiv Detail & Related papers (2024-05-13T16:52:17Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - Investigating the Limitation of CLIP Models: The Worst-Performing
Categories [53.360239882501325]
Contrastive Language-Image Pre-training (CLIP) provides a foundation model by integrating natural language into visual concepts.
It is usually expected that satisfactory overall accuracy can be achieved across numerous domains through well-designed textual prompts.
However, we found that their performance in the worst categories is significantly inferior to the overall performance.
arXiv Detail & Related papers (2023-10-05T05:37:33Z) - Fairness-guided Few-shot Prompting for Large Language Models [93.05624064699965]
In-context learning can suffer from high instability due to variations in training examples, example order, and prompt formats.
We introduce a metric to evaluate the predictive bias of a fixed prompt against labels or a given attributes.
We propose a novel search strategy based on the greedy search to identify the near-optimal prompt for improving the performance of in-context learning.
arXiv Detail & Related papers (2023-03-23T12:28:25Z) - Don't Be So Sure! Boosting ASR Decoding via Confidence Relaxation [7.056222499095849]
beam search seeks the transcript with the greatest likelihood computed using the predicted distribution.
We show that recently proposed Self-Supervised Learning (SSL)-based ASR models tend to yield exceptionally confident predictions.
We propose a decoding procedure that improves the performance of fine-tuned ASR models.
arXiv Detail & Related papers (2022-12-27T06:42:26Z) - Beyond prompting: Making Pre-trained Language Models Better Zero-shot
Learners by Clustering Representations [24.3378487252621]
We show that zero-shot text classification can be improved simply by clustering texts in the embedding spaces of pre-trained language models.
Our approach achieves an average of 20% absolute improvement over prompt-based zero-shot learning.
arXiv Detail & Related papers (2022-10-29T16:01:51Z) - LASP: Text-to-Text Optimization for Language-Aware Soft Prompting of
Vision & Language Models [67.19124099815645]
We propose a novel Language-Aware Soft Prompting (LASP) learning method to alleviate base class overfitting.
LASP is inherently amenable to including, during training, virtual classes, i.e. class names for which no visual samples are available.
LASP matches and surpasses, for the first time, the accuracy on novel classes obtained by hand-crafted prompts and CLIP for 8 out of 11 test datasets.
arXiv Detail & Related papers (2022-10-03T17:56:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.