論文の概要: 3R-GS: Best Practice in Optimizing Camera Poses Along with 3DGS
- arxiv url: http://arxiv.org/abs/2504.04294v1
- Date: Sat, 05 Apr 2025 22:31:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:11:33.380890
- Title: 3R-GS: Best Practice in Optimizing Camera Poses Along with 3DGS
- Title(参考訳): 3R-GS:3DGSと一緒にカメラポジショニングを最適化するベストプラクティス
- Authors: Zhisheng Huang, Peng Wang, Jingdong Zhang, Yuan Liu, Xin Li, Wenping Wang,
- Abstract要約: 3D Gaussian Splatting (3DGS)はその効率と品質でニューラルレンダリングに革命をもたらした。
これはStructure-from-Motion (SfM)システムからの正確なカメラのポーズに大きく依存する。
このギャップを埋める3Dガウススプレイティングフレームワークである3R-GSを提案する。
- 参考スコア(独自算出の注目度): 36.48425755917156
- License:
- Abstract: 3D Gaussian Splatting (3DGS) has revolutionized neural rendering with its efficiency and quality, but like many novel view synthesis methods, it heavily depends on accurate camera poses from Structure-from-Motion (SfM) systems. Although recent SfM pipelines have made impressive progress, questions remain about how to further improve both their robust performance in challenging conditions (e.g., textureless scenes) and the precision of camera parameter estimation simultaneously. We present 3R-GS, a 3D Gaussian Splatting framework that bridges this gap by jointly optimizing 3D Gaussians and camera parameters from large reconstruction priors MASt3R-SfM. We note that naively performing joint 3D Gaussian and camera optimization faces two challenges: the sensitivity to the quality of SfM initialization, and its limited capacity for global optimization, leading to suboptimal reconstruction results. Our 3R-GS, overcomes these issues by incorporating optimized practices, enabling robust scene reconstruction even with imperfect camera registration. Extensive experiments demonstrate that 3R-GS delivers high-quality novel view synthesis and precise camera pose estimation while remaining computationally efficient. Project page: https://zsh523.github.io/3R-GS/
- Abstract(参考訳): 3D Gaussian Splatting (3DGS)は、その効率と品質でニューラルレンダリングに革命をもたらしたが、多くの新しいビュー合成方法と同様に、Structure-from-Motion (SfM)システムからの正確なカメラポーズに大きく依存している。
最近のSfMパイプラインは目覚ましい進歩を遂げているが、挑戦的な条件(例えば、テクスチャのないシーン)における頑健なパフォーマンスと、カメラパラメータ推定の精度を同時に向上させる方法については疑問が残る。
我々は,3Dガウスとカメラパラメータを大規模再構成前のMASt3R-SfMから共同最適化することにより,このギャップを埋める3Dガウススティングフレームワークである3R-GSを提案する。
本稿では,SfM初期化の品質に対する感度と,そのグローバル最適化能力の限界という2つの課題に対処する。
我々の3R-GSは、最適化されたプラクティスを取り入れ、不完全なカメラ登録でも堅牢なシーン再構築を可能にすることで、これらの問題を克服しています。
3R-GSは、計算効率を保ちながら、高品質なノベルビュー合成と正確なカメラポーズ推定を提供することを示した。
プロジェクトページ: https://zsh523.github.io/3R-GS/
関連論文リスト
- USP-Gaussian: Unifying Spike-based Image Reconstruction, Pose Correction and Gaussian Splatting [45.246178004823534]
スパイクカメラは、0-1ビットストリームを40kHzで撮影する革新的なニューロモルフィックカメラとして、ますます3D再構成タスクに採用されている。
以前のスパイクベースの3D再構成アプローチでは、ケースケースのパイプラインを使うことが多い。
本稿では,スパイクに基づく画像再構成,ポーズ補正,ガウス的スプラッティングをエンドツーエンドのフレームワークに統一する,相乗的最適化フレームワーク textbfUSP-Gaussian を提案する。
論文 参考訳(メタデータ) (2024-11-15T14:15:16Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - Look Gauss, No Pose: Novel View Synthesis using Gaussian Splatting without Accurate Pose Initialization [11.418632671254564]
3D Gaussian Splattingは、一連の入力画像から高速で正確なノベルビュー合成のための強力なツールとして登場した。
本稿では, 外部カメラパラメータを測光残差に対して最適化することにより, 3次元ガウス散乱フレームワークの拡張を提案する。
シミュレーション環境を通して実世界のシーンと複雑な軌道について結果を示す。
論文 参考訳(メタデータ) (2024-10-11T12:01:15Z) - Visual SLAM with 3D Gaussian Primitives and Depth Priors Enabling Novel View Synthesis [11.236094544193605]
従来の幾何学に基づくSLAMシステムは、密度の高い3D再構成機能を持たない。
本稿では,新しいビュー合成技術である3次元ガウススプラッティングを組み込んだリアルタイムRGB-D SLAMシステムを提案する。
論文 参考訳(メタデータ) (2024-08-10T21:23:08Z) - Free-SurGS: SfM-Free 3D Gaussian Splatting for Surgical Scene Reconstruction [36.46068581419659]
手術シーンのリアルタイム3D再構成は,コンピュータ支援手術において重要な役割を担っている。
近年の3次元ガウススプラッティングの進歩は、リアルタイムな新規なビュー合成に大きな可能性を示している。
外科的シーン再構成のためのSfMフリー3DGS法を提案する。
論文 参考訳(メタデータ) (2024-07-03T08:49:35Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
本研究では,視覚的忠実度と前景の細部を高い圧縮比で保持する原理的感度プルーニングスコアを提案する。
また,トレーニングパイプラインを変更することなく,事前訓練した任意の3D-GSモデルに適用可能な複数ラウンドプルーファインパイプラインを提案する。
論文 参考訳(メタデータ) (2024-06-14T17:53:55Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
本稿では,トレーニング可能な2値マスクを重要度に応用し,最適プルーニング比を自動的に検出する3DGSを提案する。
実験の結果,LP-3DGSは効率と高品質の両面において良好なバランスを保っていることがわかった。
論文 参考訳(メタデータ) (2024-05-29T05:58:34Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - COLMAP-Free 3D Gaussian Splatting [88.420322646756]
本稿では,SfM前処理を使わずに新しいビュー合成を実現する手法を提案する。
入力フレームを逐次的に処理し、一度に1つの入力フレームを取ることで3Dガウスを段階的に成長させる。
提案手法は, 映像合成とカメラポーズ推定において, 大きな動き変化下での従来手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-12-12T18:39:52Z) - FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting [58.41056963451056]
本稿では,3次元ガウススプラッティングに基づく数ショットビュー合成フレームワークを提案する。
このフレームワークは3つのトレーニングビューでリアルタイムおよびフォトリアリスティックなビュー合成を可能にする。
FSGSは、さまざまなデータセットの精度とレンダリング効率の両方で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-12-01T09:30:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。