論文の概要: MedM-VL: What Makes a Good Medical LVLM?
- arxiv url: http://arxiv.org/abs/2504.04323v1
- Date: Sun, 06 Apr 2025 01:44:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:11:32.706818
- Title: MedM-VL: What Makes a Good Medical LVLM?
- Title(参考訳): MedM-VL: 良い医療用LVLMとは何か?
- Authors: Yiming Shi, Shaoshuai Yang, Xun Zhu, Haoyu Wang, Miao Li, Ji Wu,
- Abstract要約: 従来の浅層モデルとタスク固有のモデルは、臨床実践に必要な複雑さとスケーラビリティに対処する上で、ますます制限されている。
大型言語モデル(LLM)の出現は、医療用大規模視覚言語モデル(LVLM)の開発を促した。
2次元医用画像解析用MedM-VL-2Dと3次元CT用MedM-VL-CT-Chestの2種類をリリースする。
- 参考スコア(独自算出の注目度): 17.94998411263113
- License:
- Abstract: Medical image analysis is a fundamental component. As deep learning progresses, the focus has shifted from single-task applications, such as classification and segmentation, to more complex multimodal tasks, including medical visual question answering and report generation. Traditional shallow and task-specific models are increasingly limited in addressing the complexity and scalability required in clinical practice. The emergence of large language models (LLMs) has driven the development of medical Large Vision-Language Models (LVLMs), offering a unified solution for diverse vision-language tasks. In this study, we investigate various architectural designs for medical LVLMs based on the widely adopted LLaVA framework, which follows an encoder-connector-LLM paradigm. We construct two distinct models targeting 2D and 3D modalities, respectively. These models are designed to support both general-purpose medical tasks and domain-specific fine-tuning, thereby serving as effective foundation models. To facilitate reproducibility and further research, we develop a modular and extensible codebase, MedM-VL, and release two LVLM variants: MedM-VL-2D for 2D medical image analysis and MedM-VL-CT-Chest for 3D CT-based applications. The code and models are available at: https://github.com/MSIIP/MedM-VL
- Abstract(参考訳): 医用画像解析は基本的な要素である。
ディープラーニングが進むにつれて、分類やセグメンテーションのようなシングルタスクのアプリケーションから、医療的な視覚的質問応答やレポート生成など、より複雑なマルチモーダルタスクへと焦点が移っている。
従来の浅層モデルとタスク固有のモデルは、臨床実践に必要な複雑さとスケーラビリティに対処する上で、ますます制限されている。
大型言語モデル(LLM)の出現は、様々な視覚言語タスクに統一されたソリューションを提供する医療用大規模視覚言語モデル(LVLM)の開発を促した。
本研究では,エンコーダ・コネクタ・LLMパラダイムに従って,広く採用されているLLaVAフレームワークに基づく医療用LVLMの様々なアーキテクチャ設計について検討する。
2次元と3次元のモダリティを対象とする2つの異なるモデルを構築した。
これらのモデルは汎用医療タスクとドメイン固有の微調整の両方をサポートするように設計されており、効果的な基礎モデルとして機能する。
MedM-VL-2D for 2D Medical Image Analysis, MedM-VL-CT-Chest for 3D CT-based Applications。
コードとモデルについては、https://github.com/MSIIP/MedM-VLを参照してください。
関連論文リスト
- Towards a Multimodal Large Language Model with Pixel-Level Insight for Biomedicine [9.881981672848598]
MedPLIBという名前のバイオメディカルドメインのための新しいエンド・ツー・エンド・マルチモーダル・大規模言語モデルを導入する。
視覚的質問応答(VQA)、任意のピクセルレベルのプロンプト(ポイント、バウンディングボックス、自由形式の形状)、ピクセルレベルの接地をサポートする。
その結果,MedPLIBは複数の医学的視覚言語タスクにおいて最先端の結果を得たことが示唆された。
論文 参考訳(メタデータ) (2024-12-12T13:41:35Z) - Med-2E3: A 2D-Enhanced 3D Medical Multimodal Large Language Model [16.93216342922561]
我々は、3Dエンコーダと2Dエンコーダを統合した3次元医用画像解析のための新しいMLLMであるMed-2E3を提案する。
より効果的に2D特徴を集約するために,スライス内容とタスク命令に基づいて各2Dスライスに注目したテキストガイド型インタースライス(TG-IS)スコアリングモジュールを設計する。
大規模でオープンソースの3D医療マルチモーダルベンチマークの実験では、Med-2E3がタスク固有の注意分布を示し、現在の最先端モデルよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2024-11-19T09:59:59Z) - VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks [60.5257456681402]
幅広い下流タスクを扱える普遍的な埋め込みを構築する可能性について検討する。
We build a series of VLM2Vec model on SoTA VLMs like Phi-3.5-V, LLaVA-1.6 and evaluate them on MMEB's evaluation split。
以上の結果から,VLM2Vecは既存のマルチモーダル埋め込みモデルよりも10%から20%の絶対的な平均的改善を実現していることがわかった。
論文 参考訳(メタデータ) (2024-10-07T16:14:05Z) - Large Language Models for Multimodal Deformable Image Registration [50.91473745610945]
そこで本研究では,様々な医用画像からの深い特徴の整合を図るために,新しい粗いMDIRフレームワークLLM-Morphを提案する。
具体的には、まずCNNエンコーダを用いて、クロスモーダル画像ペアから深い視覚的特徴を抽出し、次に、最初のアダプタを使ってこれらのトークンを調整する。
第3に、トークンのアライメントのために、他の4つのアダプタを使用して、LLM符号化トークンをマルチスケールの視覚特徴に変換し、マルチスケールの変形場を生成し、粗いMDIRタスクを容易にする。
論文 参考訳(メタデータ) (2024-08-20T09:58:30Z) - Med-MoE: Mixture of Domain-Specific Experts for Lightweight Medical Vision-Language Models [17.643421997037514]
差別的, 生成的両マルチモーダル医療課題に対処する新しい枠組みを提案する。
Med-MoEの学習は、マルチモーダル医療アライメント、命令チューニングとルーティング、ドメイン固有のMoEチューニングの3つのステップで構成されている。
我々のモデルは最先端のベースラインに匹敵する性能を達成できる。
論文 参考訳(メタデータ) (2024-04-16T02:35:17Z) - InternVL: Scaling up Vision Foundation Models and Aligning for Generic
Visual-Linguistic Tasks [92.03764152132315]
我々は、視覚基盤モデルを60億のパラメータにスケールアップする大規模視覚言語基盤モデル(InternVL)を設計する。
このモデルは、32の汎用視覚言語ベンチマークにおいて、最先端のパフォーマンスを広く適用し、達成することができる。
強力な視覚能力を備え、ViT-22Bの代替となる。
論文 参考訳(メタデータ) (2023-12-21T18:59:31Z) - UniDCP: Unifying Multiple Medical Vision-language Tasks via Dynamic
Cross-modal Learnable Prompts [14.681493967465693]
動的クロスモーダル学習型プロンプトを用いた統一医療ビジョン言語モデルUniDCPを提案する。
UniDCPは、14のデータセットで8つの医学的ユニモーダルタスクとクロスモーダルタスクを実行することができる。
論文 参考訳(メタデータ) (2023-12-18T13:18:24Z) - Qilin-Med-VL: Towards Chinese Large Vision-Language Model for General
Healthcare [14.646414629627001]
本研究は,テキストデータと視覚データの分析を統合するために設計された,中国初の大規模視覚言語モデルであるQilin-Med-VLを紹介する。
また,100万以上の画像テキストペアからなるデータセットであるChiMed-VLもリリースしました。
論文 参考訳(メタデータ) (2023-10-27T08:05:21Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Customizing General-Purpose Foundation Models for Medical Report
Generation [64.31265734687182]
ラベル付き医用画像-レポートペアの不足は、ディープニューラルネットワークや大規模ニューラルネットワークの開発において大きな課題となっている。
本稿では,コンピュータビジョンと自然言語処理の基盤モデル (FM) として,市販の汎用大規模事前学習モデルのカスタマイズを提案する。
論文 参考訳(メタデータ) (2023-06-09T03:02:36Z) - UViM: A Unified Modeling Approach for Vision with Learned Guiding Codes [91.24112204588353]
我々は、幅広いコンピュータビジョンタスクをモデル化できる統一的なアプローチであるUViMを紹介する。
以前のモデルとは対照的に、UViMは全てのタスクに対して同じ機能を持つ。
多様な3つの視覚課題に対するUViMの有効性を実証する。
論文 参考訳(メタデータ) (2022-05-20T17:47:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。