IMPersona: Evaluating Individual Level LM Impersonation
- URL: http://arxiv.org/abs/2504.04332v2
- Date: Tue, 08 Apr 2025 03:29:25 GMT
- Title: IMPersona: Evaluating Individual Level LM Impersonation
- Authors: Quan Shi, Carlos E. Jimenez, Stephen Dong, Brian Seo, Caden Yao, Adam Kelch, Karthik Narasimhan,
- Abstract summary: We introduce IMPersona, a framework for evaluating LMs at impersonating specific individuals' writing style and personal knowledge.<n>We demonstrate that even modestly sized open-source models, such as Llama-3.1-8B-Instruct, can achieve impersonation abilities at concerning levels.
- Score: 28.040025302581366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As language models achieve increasingly human-like capabilities in conversational text generation, a critical question emerges: to what extent can these systems simulate the characteristics of specific individuals? To evaluate this, we introduce IMPersona, a framework for evaluating LMs at impersonating specific individuals' writing style and personal knowledge. Using supervised fine-tuning and a hierarchical memory-inspired retrieval system, we demonstrate that even modestly sized open-source models, such as Llama-3.1-8B-Instruct, can achieve impersonation abilities at concerning levels. In blind conversation experiments, participants (mis)identified our fine-tuned models with memory integration as human in 44.44% of interactions, compared to just 25.00% for the best prompting-based approach. We analyze these results to propose detection methods and defense strategies against such impersonation attempts. Our findings raise important questions about both the potential applications and risks of personalized language models, particularly regarding privacy, security, and the ethical deployment of such technologies in real-world contexts.
Related papers
- Evaluating LLM-based Agents for Multi-Turn Conversations: A Survey [64.08485471150486]
This survey examines evaluation methods for large language model (LLM)-based agents in multi-turn conversational settings.
We systematically reviewed nearly 250 scholarly sources, capturing the state of the art from various venues of publication.
arXiv Detail & Related papers (2025-03-28T14:08:40Z) - Beyond Profile: From Surface-Level Facts to Deep Persona Simulation in LLMs [50.0874045899661]
We introduce CharacterBot, a model designed to replicate both the linguistic patterns and distinctive thought processes of a character.
Using Lu Xun as a case study, we propose four training tasks derived from his 17 essay collections.
These include a pre-training task focused on mastering external linguistic structures and knowledge, as well as three fine-tuning tasks.
We evaluate CharacterBot on three tasks for linguistic accuracy and opinion comprehension, demonstrating that it significantly outperforms the baselines on our adapted metrics.
arXiv Detail & Related papers (2025-02-18T16:11:54Z) - Personalized Visual Instruction Tuning [30.677058613937067]
multimodal large language models (MLLMs) can engage in general conversations but fail to conduct personalized dialogues targeting at specific individuals.
This deficiency hinders the application of MLLMs in personalized settings, such as tailored visual assistants on mobile devices.
We introduce Personalized Visual Instruction Tuning (PVIT), a novel data curation and training framework designed to enable MLLMs to identify target individuals within an image.
arXiv Detail & Related papers (2024-10-09T17:46:53Z) - PersoBench: Benchmarking Personalized Response Generation in Large Language Models [6.8046587254152735]
We present a new benchmark, PersoBench, to evaluate the personalization ability of large language models (LLMs) in persona-aware dialogue generation.
Our analysis, conducted on three well-known persona-aware datasets, evaluates multiple dimensions of response quality, including fluency, diversity, coherence, and personalization.
arXiv Detail & Related papers (2024-10-04T07:29:41Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
We focus on predicting engagement in dyadic interactions by scrutinizing verbal and non-verbal cues, aiming to detect signs of disinterest or confusion.
In this work, we collect a dataset featuring 34 participants engaged in casual dyadic conversations, each providing self-reported engagement ratings at the end of each conversation.
We introduce a novel fusion strategy using Large Language Models (LLMs) to integrate multiple behavior modalities into a multimodal transcript''
arXiv Detail & Related papers (2024-09-13T18:28:12Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Human Simulacra: Benchmarking the Personification of Large Language Models [38.21708264569801]
Large language models (LLMs) are recognized as systems that closely mimic aspects of human intelligence.<n>This paper introduces a framework for constructing virtual characters' life stories from the ground up.<n> Experimental results demonstrate that our constructed simulacra can produce personified responses that align with their target characters.
arXiv Detail & Related papers (2024-02-28T09:11:14Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
We propose a novel personality detection method, called PsyCoT, which mimics the way individuals complete psychological questionnaires in a multi-turn dialogue manner.
Our experiments demonstrate that PsyCoT significantly improves the performance and robustness of GPT-3.5 in personality detection.
arXiv Detail & Related papers (2023-10-31T08:23:33Z) - Unraveling ChatGPT: A Critical Analysis of AI-Generated Goal-Oriented
Dialogues and Annotations [1.7969777786551426]
Large pre-trained language models have exhibited unprecedented capabilities in producing high-quality text via prompting.
In this paper, we explore the potential of these models to generate and annotate goal-oriented dialogues, and conduct an in-depth analysis to evaluate their quality.
Based on extensive human-based evaluations, we demonstrate that the quality of generated dialogues and annotations is on par with those generated by humans.
arXiv Detail & Related papers (2023-05-23T22:31:01Z) - Approximating Online Human Evaluation of Social Chatbots with Prompting [11.657633779338724]
Existing evaluation metrics aim to automate offline user evaluation and approximate human judgment of pre-curated dialogs.
We propose an approach to approximate online human evaluation leveraging large language models (LLMs) from the GPT family.
We introduce a new Dialog system Evaluation framework based on Prompting (DEP), which enables a fully automatic evaluation pipeline.
arXiv Detail & Related papers (2023-04-11T14:45:01Z) - Estimating the Personality of White-Box Language Models [0.589889361990138]
Large-scale language models, which are trained on large corpora of text, are being used in a wide range of applications everywhere.
Existing research shows that these models can and do capture human biases.
Many of these biases, especially those that could potentially cause harm, are being well-investigated.
However, studies that infer and change human personality traits inherited by these models have been scarce or non-existent.
arXiv Detail & Related papers (2022-04-25T23:53:53Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
The research in cognitive science suggests that understanding is an essential signal for a high-quality chit-chat conversation.
Motivated by this, we propose P2 Bot, a transmitter-receiver based framework with the aim of explicitly modeling understanding.
arXiv Detail & Related papers (2020-04-11T12:51:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.