Pre-trained Language Models and Few-shot Learning for Medical Entity Extraction
- URL: http://arxiv.org/abs/2504.04385v1
- Date: Sun, 06 Apr 2025 06:36:33 GMT
- Title: Pre-trained Language Models and Few-shot Learning for Medical Entity Extraction
- Authors: Xiaokai Wang, Guiran Liu, Binrong Zhu, Jacky He, Hongye Zheng, Hanlu Zhang,
- Abstract summary: This study proposes a medical entity extraction method based on Transformer.<n>Considering the professionalism and complexity of medical texts, we compare the performance of different pre-trained language models.<n>Few-shot Learning can enhance the accuracy of medical entity extraction.
- Score: 2.9687381456164004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study proposes a medical entity extraction method based on Transformer to enhance the information extraction capability of medical literature. Considering the professionalism and complexity of medical texts, we compare the performance of different pre-trained language models (BERT, BioBERT, PubMedBERT, ClinicalBERT) in medical entity extraction tasks. Experimental results show that PubMedBERT achieves the best performance (F1-score = 88.8%), indicating that a language model pre-trained on biomedical literature is more effective in the medical domain. In addition, we analyze the impact of different entity extraction methods (CRF, Span-based, Seq2Seq) and find that the Span-based approach performs best in medical entity extraction tasks (F1-score = 88.6%). It demonstrates superior accuracy in identifying entity boundaries. In low-resource scenarios, we further explore the application of Few-shot Learning in medical entity extraction. Experimental results show that even with only 10-shot training samples, the model achieves an F1-score of 79.1%, verifying the effectiveness of Few-shot Learning under limited data conditions. This study confirms that the combination of pre-trained language models and Few-shot Learning can enhance the accuracy of medical entity extraction. Future research can integrate knowledge graphs and active learning strategies to improve the model's generalization and stability, providing a more effective solution for medical NLP research. Keywords- Natural Language Processing, medical named entity recognition, pre-trained language model, Few-shot Learning, information extraction, deep learning
Related papers
- Towards Efficient Patient Recruitment for Clinical Trials: Application of a Prompt-Based Learning Model [0.7373617024876725]
Clinical trials are essential for advancing pharmaceutical interventions, but they face a bottleneck in selecting eligible participants.
The complex nature of unstructured medical texts presents challenges in efficiently identifying participants.
In this study, we aimed to evaluate the performance of a prompt-based large language model for the cohort selection task.
arXiv Detail & Related papers (2024-04-24T20:42:28Z) - Assertion Detection Large Language Model In-context Learning LoRA
Fine-tuning [2.401755243180179]
We introduce a novel methodology that utilizes Large Language Models (LLMs) pre-trained on a vast array of medical data for assertion detection.
Our approach achieved an F-1 of 0.74, which is 0.31 higher than the previous method.
arXiv Detail & Related papers (2024-01-31T05:11:00Z) - Zero-Shot Medical Information Retrieval via Knowledge Graph Embedding [27.14794371879541]
This paper introduces MedFusionRank, a novel approach to zero-shot medical information retrieval (MIR)
The proposed approach leverages a pre-trained BERT-style model to extract compact yet informative keywords.
These keywords are then enriched with domain knowledge by linking them to conceptual entities within a medical knowledge graph.
arXiv Detail & Related papers (2023-10-31T16:26:33Z) - Knowledge-injected Prompt Learning for Chinese Biomedical Entity
Normalization [6.927883826415262]
We propose a novel Knowledge-injected Prompt Learning (PL-Knowledge) method to tackle the Biomedical Entity Normalization (BEN) task.
Specifically, our approach consists of five stages: candidate entity matching, knowledge extraction, knowledge encoding, knowledge injection, and prediction output.
By effectively encoding the knowledge items contained in medical entities, the additional knowledge enhances the model's ability to capture latent relationships between medical entities.
arXiv Detail & Related papers (2023-08-23T09:32:40Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
Tabular data is often hidden in text, particularly in medical diagnostic reports.
We propose a novel, simple, and effective methodology for extracting structured tabular data from textual medical reports, called TEMED-LLM.
We demonstrate that our approach significantly outperforms state-of-the-art text classification models in medical diagnostics.
arXiv Detail & Related papers (2023-06-08T09:12:28Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Development and validation of a natural language processing algorithm to
pseudonymize documents in the context of a clinical data warehouse [53.797797404164946]
The study highlights the difficulties faced in sharing tools and resources in this domain.
We annotated a corpus of clinical documents according to 12 types of identifying entities.
We build a hybrid system, merging the results of a deep learning model as well as manual rules.
arXiv Detail & Related papers (2023-03-23T17:17:46Z) - Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine [68.7814360102644]
We propose the Re$3$Writer method with retrieval-augmented generation and knowledge-grounded reasoning.
We demonstrate the effectiveness of our method in generating patient discharge instructions.
arXiv Detail & Related papers (2022-10-23T16:34:39Z) - A Unified Framework of Medical Information Annotation and Extraction for
Chinese Clinical Text [1.4841452489515765]
Current state-of-the-art (SOTA) NLP models are highly integrated with deep learning techniques.
This study presents an engineering framework of medical entity recognition, relation extraction and attribute extraction.
arXiv Detail & Related papers (2022-03-08T03:19:16Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark [51.38557174322772]
We present the first Chinese Biomedical Language Understanding Evaluation benchmark.
It is a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification.
We report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling.
arXiv Detail & Related papers (2021-06-15T12:25:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.