論文の概要: AGITB: A Signal-Level Benchmark for Evaluating Artificial General Intelligence
- arxiv url: http://arxiv.org/abs/2504.04430v1
- Date: Sun, 06 Apr 2025 10:01:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:11:55.180494
- Title: AGITB: A Signal-Level Benchmark for Evaluating Artificial General Intelligence
- Title(参考訳): AGITB: 人工知能評価のための信号レベルベンチマーク
- Authors: Matej Šprogar,
- Abstract要約: 本稿では,AGITB(Artificial General Intelligence Test Bed)を紹介する。
AGITBは、シンボル表現や事前訓練に頼ることなく、時間にわたってバイナリ信号を予測できるモデルの能力を通じて、インテリジェンスを評価する。
テストベッドは、事前のバイアスを前提とせず、意味的な意味から独立して動作し、残酷な力や記憶によって解決不可能性を確保する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Despite remarkable progress in machine learning, current AI systems continue to fall short of true human-like intelligence. While Large Language Models (LLMs) excel in pattern recognition and response generation, they lack genuine understanding - an essential hallmark of Artificial General Intelligence (AGI). Existing AGI evaluation methods fail to offer a practical, gradual, and informative metric. This paper introduces the Artificial General Intelligence Test Bed (AGITB), comprising twelve rigorous tests that form a signal-processing-level foundation for the potential emergence of cognitive capabilities. AGITB evaluates intelligence through a model's ability to predict binary signals across time without relying on symbolic representations or pretraining. Unlike high-level tests grounded in language or perception, AGITB focuses on core computational invariants reflective of biological intelligence, such as determinism, sensitivity, and generalisation. The test bed assumes no prior bias, operates independently of semantic meaning, and ensures unsolvability through brute force or memorization. While humans pass AGITB by design, no current AI system has met its criteria, making AGITB a compelling benchmark for guiding and recognizing progress toward AGI.
- Abstract(参考訳): 機械学習の著しい進歩にもかかわらず、現在のAIシステムは真の人間のような知性に欠け続けている。
大きな言語モデル(LLM)はパターン認識と応答生成に優れていますが、真の理解が欠如しています。
既存のAGI評価手法では、実用的、段階的、情報的メトリクスを提供できない。
本稿では,認知能力の潜在的な出現のための信号処理レベルの基礎となる,12の厳密な試験を含む汎用知能テストベッド(AGITB)を紹介する。
AGITBは、シンボル表現や事前訓練に頼ることなく、時間にわたってバイナリ信号を予測できるモデルの能力を通じて、インテリジェンスを評価する。
言語や知覚に根ざした高レベルテストとは異なり、AGITBは決定論、感度、一般化といった生物学的知能を反映するコア計算不変性に焦点を当てている。
テストベッドは、事前のバイアスを前提とせず、意味的な意味から独立して動作し、残酷な力や記憶によって解決不可能性を確保する。
人間はAGITBを設計によって通過するが、現在のAIシステムは基準を満たしていない。
関連論文リスト
- Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
コネクショニストと象徴的人工知能(AI)の収束を探求する記事
従来、コネクショナリストAIはニューラルネットワークにフォーカスし、シンボリックAIはシンボリック表現とロジックを強調していた。
大型言語モデル(LLM)の最近の進歩は、人間の言語をシンボルとして扱う際のコネクショナリストアーキテクチャの可能性を強調している。
論文 参考訳(メタデータ) (2024-07-11T14:00:53Z) - Over the Edge of Chaos? Excess Complexity as a Roadblock to Artificial General Intelligence [4.901955678857442]
我々は、AIの性能が臨界複雑性しきい値を超えると不安定になるかもしれない複雑なシステムにおける位相遷移に類似した臨界点の存在を仮定した。
我々のシミュレーションは、AIシステムの複雑さの増加が、より高い臨界閾値を超え、予測不可能なパフォーマンス行動を引き起こすことを実証した。
論文 参考訳(メタデータ) (2024-07-04T05:46:39Z) - Integration of cognitive tasks into artificial general intelligence test
for large models [54.72053150920186]
我々は、認知科学にインスパイアされた人工知能(AGI)テストの包括的な枠組みを提唱する。
認知科学に触発されたAGIテストは、結晶化インテリジェンス、流体インテリジェンス、社会インテリジェンス、エンボディドインテリジェンスを含む、すべてのインテリジェンスファセットを含んでいる。
論文 参考訳(メタデータ) (2024-02-04T15:50:42Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - A Survey on Brain-Inspired Deep Learning via Predictive Coding [85.93245078403875]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - Brain in a Vat: On Missing Pieces Towards Artificial General
Intelligence in Large Language Models [83.63242931107638]
本稿では,知的エージェントの4つの特徴について述べる。
実世界の物体との活発な関わりは、概念的表現を形成するためのより堅牢な信号をもたらすと我々は主張する。
我々は、人工知能分野における将来的な研究の方向性を概説して結論付ける。
論文 参考訳(メタデータ) (2023-07-07T13:58:16Z) - Beyond Interpretable Benchmarks: Contextual Learning through Cognitive
and Multimodal Perception [0.0]
この研究は、チューリングテストがコンピュータシステムを人為的に形作る試みであると誤解されていることを主張する。
通訳性に欠けるにもかかわらず、汎用知能の基盤として暗黙の学習を強調している。
論文 参考訳(メタデータ) (2022-12-04T08:30:04Z) - Certifiable Artificial Intelligence Through Data Fusion [7.103626867766158]
本稿では,人工知能(AI)システムの採用,フィールド化,保守に関する課題をレビューし,提案する。
画像データ融合により、精度対距離を考慮したAI物体認識精度を支援する。
論文 参考訳(メタデータ) (2021-11-03T03:34:19Z) - Watershed of Artificial Intelligence: Human Intelligence, Machine
Intelligence, and Biological Intelligence [0.2580765958706853]
本稿は,23年前に提案された1回学習機構と,それに続く画像分類におけるワンショット学習の成功をレビューする。
AIは、人工知能(AHI)、人工知能(AMI)、および人工知能(ABI)の3つのカテゴリに明確に分割されるべきである。
論文 参考訳(メタデータ) (2021-04-27T13:03:25Z) - Estimating the Brittleness of AI: Safety Integrity Levels and the Need
for Testing Out-Of-Distribution Performance [0.0]
AI(Test, Evaluation, Verification, and Validation for Artificial Intelligence)は、AI研究者が生み出した経済的、社会的報酬を制限することを脅かす課題である。
本稿では,いずれもDeep Neural Networksを定めていないことを論じる。
論文 参考訳(メタデータ) (2020-09-02T03:33:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。