論文の概要: Beyond Statistical Learning: Exact Learning Is Essential for General Intelligence
- arxiv url: http://arxiv.org/abs/2506.23908v1
- Date: Mon, 30 Jun 2025 14:37:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:54.103625
- Title: Beyond Statistical Learning: Exact Learning Is Essential for General Intelligence
- Title(参考訳): 統計的学習を超えて:厳密な学習は一般知性に不可欠
- Authors: András György, Tor Lattimore, Nevena Lazić, Csaba Szepesvári,
- Abstract要約: 音の誘惑的推論は、一般知能の必然的に望ましい側面である。
もっとも先進的なフロンティアシステムでさえ、定期的かつ一貫して容易に解決可能な推論タスクに干渉していることは、よく文書化されている。
彼らの不健全な振る舞いは、彼らの発展を支えている統計的学習のアプローチの結果である、と我々は主張する。
- 参考スコア(独自算出の注目度): 59.07578850674114
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sound deductive reasoning -- the ability to derive new knowledge from existing facts and rules -- is an indisputably desirable aspect of general intelligence. Despite the major advances of AI systems in areas such as math and science, especially since the introduction of transformer architectures, it is well-documented that even the most advanced frontier systems regularly and consistently falter on easily-solvable deductive reasoning tasks. Hence, these systems are unfit to fulfill the dream of achieving artificial general intelligence capable of sound deductive reasoning. We argue that their unsound behavior is a consequence of the statistical learning approach powering their development. To overcome this, we contend that to achieve reliable deductive reasoning in learning-based AI systems, researchers must fundamentally shift from optimizing for statistical performance against distributions on reasoning problems and algorithmic tasks to embracing the more ambitious exact learning paradigm, which demands correctness on all inputs. We argue that exact learning is both essential and possible, and that this ambitious objective should guide algorithm design.
- Abstract(参考訳): 音の誘惑的推論 -- 既存の事実や規則から新しい知識を導き出す能力 -- は、一般知能の間違いなく望ましい側面である。
数学や科学などの分野におけるAIシステムの大きな進歩にもかかわらず、特にトランスフォーマーアーキテクチャの導入以来、最も先進的なフロンティアシステムでさえ、容易に解ける推論タスクに定期的に一貫して干渉していることは十分に文書化されている。
したがって、これらのシステムは、演能的な推論が可能な汎用人工知能の実現という夢を達成するには不適当である。
彼らの不健全な振る舞いは、彼らの発展を支えている統計的学習のアプローチの結果である、と我々は主張する。
これを解決するために、研究者は、学習ベースのAIシステムにおいて信頼性の高い推論を達成するために、推論問題やアルゴリズムタスクの分布に対する統計的パフォーマンスの最適化から、全ての入力に正確性を要求するより野心的な正確な学習パラダイムを受け入れることへの根本的なシフトが必要である、と論じる。
我々は、正確な学習は必須かつ可能であり、この野心的な目的はアルゴリズム設計を導くべきであると論じている。
関連論文リスト
- World Models in Artificial Intelligence: Sensing, Learning, and Reasoning Like a Child [10.183372891207966]
世界モデルは人工知能(AI)が成果を予測し、その環境を判断し、意思決定を導くのに役立つ。
我々は6つの重要な研究分野、物理情報学習、ニューロシンボリックラーニング、継続学習、因果推論、ヒューマン・イン・ザ・ループAI、そして責任あるAIを、AIの真理化を可能にする上で不可欠なものとして強調する。
論文 参考訳(メタデータ) (2025-03-19T12:50:40Z) - Probabilistic Artificial Intelligence [42.59649764999974]
インテリジェンスの主な側面は、予測を行うだけでなく、これらの予測の不確実性について推論し、決定を行うときにこの不確実性を考慮することである。
データ不足による「緊急的」不確実性と「アラート的」不確実性との区別について論じる。
論文 参考訳(メタデータ) (2025-02-07T14:29:07Z) - Common Sense Is All You Need [5.280511830552275]
人工知能(AI)は近年大きな進歩を遂げているが、すべての動物に存在する認知の基本的な側面(常識)に悩まされ続けている。
現在のAIシステムは、広範囲の事前知識を必要とせずに、新しい状況に適応する能力に欠けることが多い。
この原稿は、AIシステムに常識を統合することは、真の自律性を達成し、AIの完全な社会的および商業的価値を解放するために不可欠である、と論じている。
論文 参考訳(メタデータ) (2025-01-11T21:23:41Z) - Artificial Expert Intelligence through PAC-reasoning [21.91294369791479]
人工知能(AEI)は、人工知能(AGI)と狭義のAIの両方の限界を超越しようとしている。
AEIは、ドメイン固有の専門知識と、トップヒューマンの専門家と同様、批判的で正確な推論能力を統合することを目指している。
論文 参考訳(メタデータ) (2024-12-03T13:25:18Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
我々は人間の知恵について知られているものを調べ、そのAIのビジョンをスケッチする。
AIシステムは特にメタ認知に苦しむ。
スマートAIのベンチマーク、トレーニング、実装について論じる。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Towards Automated Knowledge Integration From Human-Interpretable Representations [55.2480439325792]
我々は,情報メタ学習の原理を理論的に導入・動機付けし,自動的かつ制御可能な帰納バイアス選択を可能にする。
データ効率と一般化を改善するための情報メタラーニングのメリットと限界を実証的に示す。
論文 参考訳(メタデータ) (2024-02-25T15:08:37Z) - Learning by Applying: A General Framework for Mathematical Reasoning via
Enhancing Explicit Knowledge Learning [47.96987739801807]
本稿では,既存のモデル(バックボーン)を明示的な知識学習によって原則的に拡張する枠組みを提案する。
LeApでは,新しい問題知識表現パラダイムで知識学習を行う。
LeApはすべてのバックボーンのパフォーマンスを改善し、正確な知識を習得し、より解釈可能な推論プロセスを実現する。
論文 参考訳(メタデータ) (2023-02-11T15:15:41Z) - A Comprehensive Survey of Continual Learning: Theory, Method and
Application [64.23253420555989]
本稿では,基礎的設定,理論的基礎,代表的方法,実践的応用を橋渡しする継続的学習に関する包括的調査を行う。
連続学習の一般的な目的は、資源効率の文脈において、適切な安定性と塑性のトレードオフと適切なタスク内/タスク内一般化性を保証することであると要約する。
論文 参考訳(メタデータ) (2023-01-31T11:34:56Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
興味深い仮説は、人間と動物の知性はいくつかの原則によって説明できるということである。
この研究は、主に高いレベルとシーケンシャルな意識的処理に関心のある人を中心に、より大きなリストを考察する。
これらの特定の原則を明確にする目的は、人間の能力から恩恵を受けるAIシステムを構築するのに役立つ可能性があることである。
論文 参考訳(メタデータ) (2020-11-30T18:29:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。