論文の概要: Squeeze and Excitation: A Weighted Graph Contrastive Learning for Collaborative Filtering
- arxiv url: http://arxiv.org/abs/2504.04443v1
- Date: Sun, 06 Apr 2025 11:30:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:08:37.350288
- Title: Squeeze and Excitation: A Weighted Graph Contrastive Learning for Collaborative Filtering
- Title(参考訳): Squeeze and Excitation: 協調フィルタリングのための重み付きグラフコントラスト学習
- Authors: Zheyu Chen, Jinfeng Xu, Yutong Wei, Ziyue Peng,
- Abstract要約: グラフコントラスト学習(GCL)は、表現学習の堅牢性を高めることを目的としている。
Weighted Graph Contrastive Learning framework (WeightedGCL)は、特徴の非合理的な割り当てに対処する。
重み付けGCLは、競合するベースラインに比べて大幅に精度が向上する。
- 参考スコア(独自算出の注目度): 1.3535213052193866
- License:
- Abstract: Contrastive Learning (CL) has recently emerged as a powerful technique in recommendation systems, particularly for its capability to harness self-supervised signals from perturbed views to mitigate the persistent challenge of data sparsity. The process of constructing perturbed views of the user-item bipartite graph and performing contrastive learning between perturbed views in a graph convolutional network (GCN) is called graph contrastive learning (GCL), which aims to enhance the robustness of representation learning. Although existing GCL-based models are effective, the weight assignment method for perturbed views has not been fully explored. A critical problem in existing GCL-based models is the irrational allocation of feature attention. This problem limits the model's ability to effectively leverage crucial features, resulting in suboptimal performance. To address this, we propose a Weighted Graph Contrastive Learning framework (WeightedGCL). Specifically, WeightedGCL applies a robust perturbation strategy, which perturbs only the view of the final GCN layer. In addition, WeightedGCL incorporates a squeeze and excitation network (SENet) to dynamically weight the features of the perturbed views. Our WeightedGCL strengthens the model's focus on crucial features and reduces the impact of less relevant information. Extensive experiments on widely used datasets demonstrate that our WeightedGCL achieves significant accuracy improvements compared to competitive baselines.
- Abstract(参考訳): コントラスト学習(CL)は、特にデータ空間の永続的課題を軽減するために、摂動ビューからの自己教師付き信号を活用する能力によって、リコメンデーションシステムにおいて強力な技術として最近登場した。
グラフ畳み込みネットワーク (GCN) において, 両部グラフの摂動ビューを構築し, コントラスト学習を行うプロセスはグラフコントラスト学習 (GCL) と呼ばれ, 表現学習の堅牢性を高めることを目的としている。
既存のGCLベースのモデルは有効であるが、摂動ビューの重み付け手法は十分に検討されていない。
既存のGCLベースのモデルにおける重要な問題は、特徴的注意を不合理に割り当てることである。
この問題は、モデルが重要な機能を効果的に活用する能力を制限し、結果として準最適性能をもたらす。
これを解決するために,Weighted Graph Contrastive Learning framework (WeightedGCL)を提案する。
具体的には、WeightedGCLは、最終GCN層のビューのみを摂動する堅牢な摂動戦略を適用している。
さらに、WeightedGCLは、摂動ビューの特徴を動的に重み付けするために、圧縮励起ネットワーク(SENet)を組み込んでいる。
私たちのWeightedGCLは、重要な機能に対するモデルの焦点を強化し、関連性の低い情報の影響を減らす。
広く使われているデータセットに対する大規模な実験は、WeightedGCLが競合するベースラインに比べて大幅に精度が向上していることを示している。
関連論文リスト
- Graph Structure Refinement with Energy-based Contrastive Learning [56.957793274727514]
グラフの構造と表現を学習するための生成訓練と識別訓練のジョイントに基づく教師なし手法を提案する。
本稿では,ECL-GSR(Energy-based Contrastive Learning)によるグラフ構造再構成(GSR)フレームワークを提案する。
ECL-GSRは、主要なベースラインに対するサンプルやメモリの少ない高速なトレーニングを実現し、下流タスクの単純さと効率性を強調している。
論文 参考訳(メタデータ) (2024-12-20T04:05:09Z) - Dual Adversarial Perturbators Generate rich Views for Recommendation [16.284670207195056]
AvoGCLは、グラフ構造に逆行訓練を適用し、摂動を埋め込むことでカリキュラム学習をエミュレートする。
3つの実世界のデータセットの実験では、AvoGCLが最先端の競合より大幅に優れていることが示されている。
論文 参考訳(メタデータ) (2024-08-26T15:19:35Z) - Dual-Channel Latent Factor Analysis Enhanced Graph Contrastive Learning for Recommendation [2.9449497738046078]
グラフニューラルネットワーク(GNN)は、推薦システムのための強力な学習方法である。
近年,コントラスト学習とGNNの統合は,レコメンデータシステムにおいて顕著な性能を示している。
本研究は,LFA-GCLと呼ばれる潜在因子分析(LFA)強化GCLアプローチを提案する。
論文 参考訳(メタデータ) (2024-08-09T03:24:48Z) - Towards Robust Recommendation via Decision Boundary-aware Graph Contrastive Learning [25.514007761856632]
グラフコントラスト学習(GCL)は、データ間隔によるバイアスの低減効果により、レコメンデータシステムにおいて注目を集めている。
これらの手法は, 動的学習過程における意味的不変性と難易度とのバランスをとるのに苦慮していると論じる。
本稿では,モデル能力の進化に伴い,コントラッシブペアのセマンティック不変性を効果的に維持し,動的に適応する新しいGCLベースのレコメンデーションフレームワークRGCLを提案する。
論文 参考訳(メタデータ) (2024-07-14T13:03:35Z) - Overcoming Pitfalls in Graph Contrastive Learning Evaluation: Toward
Comprehensive Benchmarks [60.82579717007963]
本稿では,グラフコントラスト学習(GCL)手法の有効性,一貫性,全体的な能力をより正確に評価するために,拡張された評価フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-24T01:47:56Z) - Graph-level Protein Representation Learning by Structure Knowledge
Refinement [50.775264276189695]
本稿では、教師なしの方法でグラフ全体の表現を学習することに焦点を当てる。
本稿では、データ構造を用いて、ペアが正か負かの確率を決定する構造知識精製(Structure Knowledge Refinement, SKR)という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-05T09:05:33Z) - Rethinking and Simplifying Bootstrapped Graph Latents [48.76934123429186]
グラフ・コントラッシブ・ラーニング(GCL)はグラフ自己教師型ラーニングにおいて代表的なパラダイムとして登場した。
SGCLは2つの繰り返しの出力を正のペアとして利用するシンプルで効果的なGCLフレームワークである。
我々は,SGCLがより少ないパラメータ,少ない時間と空間コスト,およびかなりの収束速度で競合性能を達成可能であることを示す。
論文 参考訳(メタデータ) (2023-12-05T09:49:50Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF)は、削除されたデータにおける$epsilon$-massの摂動に応答してパラメータの変化を効率的に正確に推定できる、モデルに依存しない未学習の手法である。
我々は,4つの代表的GNNモデルと3つのベンチマークデータセットについて広範な実験を行い,未学習の有効性,モデルの有用性,未学習効率の観点からGIFの優位性を正当化する。
論文 参考訳(メタデータ) (2023-04-06T03:02:54Z) - LightGCL: Simple Yet Effective Graph Contrastive Learning for
Recommendation [9.181689366185038]
グラフニューラルクラスタリングネットワーク(GNN)は、グラフベースのレコメンデータシステムのための強力な学習手法である。
本稿では,単純なグラフコントラスト学習パラダイムであるLightGCLを提案する。
論文 参考訳(メタデータ) (2023-02-16T10:16:21Z) - Unifying Graph Contrastive Learning with Flexible Contextual Scopes [57.86762576319638]
フレキシブルコンテキストスコープを用いたグラフコントラスト学習(略してUGCL)という自己教師型学習手法を提案する。
本アルゴリズムは,隣接行列のパワーを制御し,コンテキストスコープによるフレキシブルな文脈表現を構築する。
局所的スコープと文脈的スコープの両方の表現に基づいて、distLはグラフ表現学習のための非常に単純な対照的な損失関数を最適化する。
論文 参考訳(メタデータ) (2022-10-17T07:16:17Z) - An Empirical Study of Graph Contrastive Learning [17.246488437677616]
グラフコントラスト学習は、人間のアノテーションなしでグラフ表現を学習するための新しいパラダイムを確立する。
一般的なGCLパラダイムでは,拡張関数,コントラストモード,コントラスト目的,負のマイニング技術など,いくつかの重要な設計上の考慮事項を識別する。
今後の研究の促進とGCLアルゴリズムの実装を容易にするため,モジュール化されたCLコンポーネント,標準化された評価,実験管理を特徴とする,使い易いライブラリPyGCLを開発した。
論文 参考訳(メタデータ) (2021-09-02T17:43:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。