論文の概要: Your Image Generator Is Your New Private Dataset
- arxiv url: http://arxiv.org/abs/2504.04582v2
- Date: Tue, 08 Apr 2025 08:35:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 10:05:14.737662
- Title: Your Image Generator Is Your New Private Dataset
- Title(参考訳): あなたのイメージジェネレータは、あなたの新しいプライベートデータセット
- Authors: Nicolo Resmini, Eugenio Lomurno, Cristian Sbrolli, Matteo Matteucci,
- Abstract要約: 生成拡散モデルは、トレーニングデータを合成的に生成する強力なツールとして登場した。
本稿では,これらの課題に対処するために,テクスチャ・コンディションド・ナレッジ・リサイクリング・パイプラインを提案する。
パイプラインは10の多様な画像分類ベンチマークで厳格に評価されている。
- 参考スコア(独自算出の注目度): 4.09225917049674
- License:
- Abstract: Generative diffusion models have emerged as powerful tools to synthetically produce training data, offering potential solutions to data scarcity and reducing labelling costs for downstream supervised deep learning applications. However, effectively leveraging text-conditioned image generation for building classifier training sets requires addressing key issues: constructing informative textual prompts, adapting generative models to specific domains, and ensuring robust performance. This paper proposes the Text-Conditioned Knowledge Recycling (TCKR) pipeline to tackle these challenges. TCKR combines dynamic image captioning, parameter-efficient diffusion model fine-tuning, and Generative Knowledge Distillation techniques to create synthetic datasets tailored for image classification. The pipeline is rigorously evaluated on ten diverse image classification benchmarks. The results demonstrate that models trained solely on TCKR-generated data achieve classification accuracies on par with (and in several cases exceeding) models trained on real images. Furthermore, the evaluation reveals that these synthetic-data-trained models exhibit substantially enhanced privacy characteristics: their vulnerability to Membership Inference Attacks is significantly reduced, with the membership inference AUC lowered by 5.49 points on average compared to using real training data, demonstrating a substantial improvement in the performance-privacy trade-off. These findings indicate that high-fidelity synthetic data can effectively replace real data for training classifiers, yielding strong performance whilst simultaneously providing improved privacy protection as a valuable emergent property. The code and trained models are available in the accompanying open-source repository.
- Abstract(参考訳): 生成拡散モデルは、データ不足に対する潜在的な解決策を提供し、下流の教師付きディープラーニングアプリケーションに対するラベリングコストを低減し、トレーニングデータを合成する強力なツールとして登場した。
しかし、テキスト条件付き画像生成を効果的に活用するには、情報的テキストプロンプトの構築、特定のドメインへの生成モデルの適用、堅牢なパフォーマンスの確保など、重要な課題に対処する必要がある。
本稿では,これらの課題に対処するために,テキスト・コンディションド・ナレッジ・リサイクリング(TCKR)パイプラインを提案する。
TCKRは、動的な画像キャプション、パラメータ効率の拡散モデル微調整、および生成的知識蒸留技術を組み合わせて、画像分類に適した合成データセットを作成する。
パイプラインは10の多様な画像分類ベンチマークで厳格に評価されている。
その結果,TCKR生成データのみをトレーニングしたモデルは,実画像でトレーニングしたモデルと同等(場合によっては超え)な分類精度が得られることがわかった。
さらに、これらの合成データ学習モデルでは、メンバーシップ推論攻撃に対する脆弱性が大幅に低減され、AUCは実際のトレーニングデータよりも平均5.49ポイント低下し、パフォーマンスプライバシトレードオフが大幅に改善された。
以上の結果から,高忠実性合成データは実データに取って代わることが可能であり,同時にプライバシー保護を向上し,価値ある創発的特性となることが示唆された。
コードとトレーニングされたモデルは、付随するオープンソースリポジトリで利用できる。
関連論文リスト
- Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
アドリラルロバスト性は、ニューラルネットワークをエンコードする難しい性質として伝統的に信じられてきた。
データを使わずに敵の堅牢性を実現するために,スケーラブルでモデルに依存しないソリューションを開発した。
論文 参考訳(メタデータ) (2024-07-26T10:49:14Z) - Synthetic Image Learning: Preserving Performance and Preventing Membership Inference Attacks [5.0243930429558885]
本稿では,下流分類器の学習のための合成データの生成と利用を最適化するパイプラインである知識リサイクル(KR)を紹介する。
このパイプラインの核心は生成的知識蒸留(GKD)であり、情報の品質と有用性を大幅に向上させる技術が提案されている。
その結果、実データと合成データでトレーニングされたモデルと、実データでトレーニングされたモデルとの性能差が著しく低下した。
論文 参考訳(メタデータ) (2024-07-22T10:31:07Z) - DataDream: Few-shot Guided Dataset Generation [90.09164461462365]
実データ分布をより忠実に表現する分類データセットを合成するためのフレームワークを提案する。
DataDream fine-tunes LoRA weights for the image generation model on the few real image before generated the training data using the adapt model。
次に、合成データを用いてCLIPのLoRA重みを微調整し、様々なデータセットに対する以前のアプローチよりも下流画像の分類を改善する。
論文 参考訳(メタデータ) (2024-07-15T17:10:31Z) - HYPE: Hyperbolic Entailment Filtering for Underspecified Images and Texts [49.21764163995419]
本稿では,HyPerbolic Entailment Filtering (HYPE)を導入し,ノイズの多い画像とテキストのペアのデータセットから有意で整合したデータを抽出する。
HYPEは、フィルタリング効率を大幅に改善するだけでなく、DataCompベンチマークで新しい最先端を設定できる。
このブレークスルーは、HYPEがデータ選択プロセスを洗練させる可能性を示し、より正確で効率的な自己教師型学習モデルの開発に寄与する。
論文 参考訳(メタデータ) (2024-04-26T16:19:55Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
ブリッジドトランスファー(ブリッジドトランスファー)と呼ばれる新しいフレームワークを導入する。このフレームワークは、当初、トレーニング済みモデルの微調整に合成画像を使用し、転送性を向上させる。
合成画像と実画像のスタイルアライメントを改善するために,データセットスタイルの逆変換方式を提案する。
提案手法は10の異なるデータセットと5つの異なるモデルで評価され、一貫した改善が示されている。
論文 参考訳(メタデータ) (2024-03-28T22:25:05Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Improving the Effectiveness of Deep Generative Data [5.856292656853396]
下流の画像処理タスクのための純粋合成画像のモデルを訓練すると、実際のデータに対するトレーニングに比べ、望ましくない性能低下が生じる。
本稿では,この現象に寄与する要因を記述した新しい分類法を提案し,CIFAR-10データセットを用いて検討する。
本手法は,合成データと合成データの混合による学習と合成データのみの学習において,下流分類タスクのベースラインに優れる。
論文 参考訳(メタデータ) (2023-11-07T12:57:58Z) - From Zero to Hero: Detecting Leaked Data through Synthetic Data Injection and Model Querying [10.919336198760808]
分類モデルの学習に使用される漏洩データを検出する新しい手法を提案する。
textscLDSSは、クラス分散の局所的なシフトによって特徴付けられる、少量の合成データを所有者のデータセットに注入する。
これにより、モデルクエリ単独で、リークデータに基づいてトレーニングされたモデルの効果的な識別が可能になる。
論文 参考訳(メタデータ) (2023-10-06T10:36:28Z) - Leaving Reality to Imagination: Robust Classification via Generated
Datasets [24.411444438920988]
近年のロバスト性に関する研究では、テストセットと同様のデータセットでトレーニングされたニューラルイメージ分類器間での顕著なパフォーマンスギャップが明らかになった。
生成したデータセットは、画像分類器の自然な堅牢性にどのように影響するのか?
生成したデータで強化された実データに基づいて訓練された画像ネット分類器は、標準トレーニングよりも精度が高く、効果的に頑健であることがわかった。
論文 参考訳(メタデータ) (2023-02-05T22:49:33Z) - Negative Data Augmentation [127.28042046152954]
負のデータ拡張サンプルは、データ分散のサポートに関する情報を提供することを示す。
我々は、NDAを識別器の合成データの追加源として利用する新しいGAN訓練目標を提案する。
実験により,本手法で訓練したモデルでは,異常検出能力の向上とともに条件付き・条件付き画像生成の改善を実現している。
論文 参考訳(メタデータ) (2021-02-09T20:28:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。