論文の概要: Here Comes the Explanation: A Shapley Perspective on Multi-contrast Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2504.04645v1
- Date: Sun, 06 Apr 2025 23:52:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:13:28.674256
- Title: Here Comes the Explanation: A Shapley Perspective on Multi-contrast Medical Image Segmentation
- Title(参考訳): マルチコントラスト・メディカル・イメージ・セグメンテーションの見地から
- Authors: Tianyi Ren, Juampablo Heras Rivera, Hitender Oswal, Yutong Pan, Agamdeep Chopra, Jacob Ruzevick, Mehmet Kurt,
- Abstract要約: そこで我々は,脳腫瘍セグメンテーションにおける標準指標に基づいてトレーニングした最先端のモデルについて,コントラストレベルのShapley値を用いて説明する。
以上の結果から,Shapley解析は腫瘍セグメンテーションに使用する異なるモデルの挙動に関する貴重な知見を提供することが示された。
- 参考スコア(独自算出の注目度): 0.1675245825272646
- License:
- Abstract: Deep learning has been successfully applied to medical image segmentation, enabling accurate identification of regions of interest such as organs and lesions. This approach works effectively across diverse datasets, including those with single-image contrast, multi-contrast, and multimodal imaging data. To improve human understanding of these black-box models, there is a growing need for Explainable AI (XAI) techniques for model transparency and accountability. Previous research has primarily focused on post hoc pixel-level explanations, using methods gradient-based and perturbation-based apporaches. These methods rely on gradients or perturbations to explain model predictions. However, these pixel-level explanations often struggle with the complexity inherent in multi-contrast magnetic resonance imaging (MRI) segmentation tasks, and the sparsely distributed explanations have limited clinical relevance. In this study, we propose using contrast-level Shapley values to explain state-of-the-art models trained on standard metrics used in brain tumor segmentation. Our results demonstrate that Shapley analysis provides valuable insights into different models' behavior used for tumor segmentation. We demonstrated a bias for U-Net towards over-weighing T1-contrast and FLAIR, while Swin-UNETR provided a cross-contrast understanding with balanced Shapley distribution.
- Abstract(参考訳): 深層学習は医用画像のセグメンテーションに成功し、臓器や病変などの関心領域の正確な同定を可能にした。
このアプローチは、シングルイメージコントラスト、マルチコントラスト、マルチモーダルイメージングデータを含む、多様なデータセットで効果的に機能する。
これらのブラックボックスモデルの人間の理解を改善するために、モデルの透明性と説明責任のための説明可能なAI(XAI)技術の必要性が高まっている。
これまでの研究は主に、勾配に基づく手法と摂動に基づく近似を用いて、ホック後のピクセルレベルの説明に焦点を当ててきた。
これらの手法はモデル予測を説明するために勾配や摂動に依存する。
しかしながら、これらのピクセルレベルの説明は、マルチコントラストMRI(Multi-Contrast magnetic resonance imaging)セグメンテーションタスクに固有の複雑さに苦慮することが多い。
本研究ではコントラストレベルのShapley値を用いて,脳腫瘍セグメンテーションに使用される標準指標に基づいてトレーニングされた最先端のモデルを説明する。
以上の結果から,Shapley解析は腫瘍セグメンテーションに使用する異なるモデルの挙動に関する貴重な知見を提供することが示された。
We showed a bias for U-Net towards over-weighing T1-contrast and FLAIR, while Swin-UNETR provided a cross-contrast understanding with balanced Shapley distribution。
関連論文リスト
- Discrepancy-based Diffusion Models for Lesion Detection in Brain MRI [1.8420387715849447]
拡散確率モデル(DPM)はコンピュータビジョンタスクにおいて大きな効果を示した。
彼らの顕著なパフォーマンスはラベル付きデータセットに大きく依存しており、医療画像への適用を制限する。
本稿では,異なる特徴を取り入れた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-08T11:26:49Z) - Cross-model Mutual Learning for Exemplar-based Medical Image Segmentation [25.874281336821685]
Exemplar-based Medical Image(CMEMS)のためのクロスモデル相互学習フレームワーク
外来医用画像のためのクロスモデル相互学習フレームワーク(CMEMS)について紹介する。
論文 参考訳(メタデータ) (2024-04-18T00:18:07Z) - CoNeS: Conditional neural fields with shift modulation for multi-sequence MRI translation [5.662694302758443]
マルチシーケンスMRI(Multi-sequence magnetic resonance imaging)は、現代の臨床研究とディープラーニング研究の両方に広く応用されている。
画像取得プロトコルの違いや、患者のコントラスト剤の禁忌が原因で、MRIの1つ以上の配列が欠落することがしばしば起こる。
1つの有望なアプローチは、生成モデルを利用して欠落したシーケンスを合成することであり、これはサロゲート獲得の役割を果たす。
論文 参考訳(メタデータ) (2023-09-06T19:01:58Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - GraVIS: Grouping Augmented Views from Independent Sources for
Dermatology Analysis [52.04899592688968]
皮膚科画像から自己教師付き特徴を学習するために特に最適化されたGraVISを提案する。
GraVISは、病変のセグメンテーションと疾患分類のタスクにおいて、転送学習と自己教師型学習を著しく上回っている。
論文 参考訳(メタデータ) (2023-01-11T11:38:37Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
我々は、デコードフェーズに2つの並列分岐を持つMixed-UNetという新しいモデルを開発する。
地域病院や公開データセットから収集したデータセットに対して,いくつかの一般的なディープラーニングに基づくセグメンテーションアプローチに対して,設計したMixed-UNetを評価した。
論文 参考訳(メタデータ) (2022-05-06T08:37:02Z) - Variational Inference for Quantifying Inter-observer Variability in
Segmentation of Anatomical Structures [12.138198227748353]
ほとんどのセグメンテーション法は、単純にイメージからその単一セグメンテーションマップへのマッピングをモデル化し、アノテータの不一致を考慮に入れない。
特定のMR画像から得られる可視分割写像の分布をモデル化する新しい変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-18T16:33:33Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。