EquiCPI: SE(3)-Equivariant Geometric Deep Learning for Structure-Aware Prediction of Compound-Protein Interactions
- URL: http://arxiv.org/abs/2504.04654v1
- Date: Mon, 07 Apr 2025 00:57:08 GMT
- Title: EquiCPI: SE(3)-Equivariant Geometric Deep Learning for Structure-Aware Prediction of Compound-Protein Interactions
- Authors: Ngoc-Quang Nguyen,
- Abstract summary: EquiCPI is an end-to-end geometric deep learning framework that synergizes first-principles structural modeling with SE(3)-equivariant neural networks.<n>At its core, EquiCPI employs SE(3)-equivariant message passing over atomic point clouds, preserving symmetry under rotations, translations, and reflections.<n>The proposed model is evaluated on BindingDB (affinity prediction) and DUD-E (virtual screening), EquiCPI performance on par with or exceeding the state-of-the-art deep learning competitors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate prediction of compound-protein interactions (CPI) remains a cornerstone challenge in computational drug discovery. While existing sequence-based approaches leverage molecular fingerprints or graph representations, they critically overlook three-dimensional (3D) structural determinants of binding affinity. To bridge this gap, we present EquiCPI, an end-to-end geometric deep learning framework that synergizes first-principles structural modeling with SE(3)-equivariant neural networks. Our pipeline transforms raw sequences into 3D atomic coordinates via ESMFold for proteins and DiffDock-L for ligands, followed by physics-guided conformer re-ranking and equivariant feature learning. At its core, EquiCPI employs SE(3)-equivariant message passing over atomic point clouds, preserving symmetry under rotations, translations, and reflections, while hierarchically encoding local interaction patterns through tensor products of spherical harmonics. The proposed model is evaluated on BindingDB (affinity prediction) and DUD-E (virtual screening), EquiCPI achieves performance on par with or exceeding the state-of-the-art deep learning competitors.
Related papers
- Neural Descriptors: Self-Supervised Learning of Robust Local Surface Descriptors Using Polynomial Patches [11.450257794341052]
We present a self-supervised learning approach for extracting geometric features from 3D surfaces.
Our method combines synthetic data generation with a neural architecture designed to learn sampling-invariant features.
arXiv Detail & Related papers (2025-03-05T21:15:14Z) - Ophiuchus: Scalable Modeling of Protein Structures through Hierarchical
Coarse-graining SO(3)-Equivariant Autoencoders [1.8835495377767553]
Three-dimensional native states of natural proteins display recurring and hierarchical patterns.
Traditional graph-based modeling of protein structures is often limited to operate within a single fine-grained resolution.
We introduce Ophiuchus, an SO(3)-equivariant coarse-graining model that efficiently operates on all-atom protein structures.
arXiv Detail & Related papers (2023-10-04T01:01:11Z) - Iterative Graph Filtering Network for 3D Human Pose Estimation [5.177947445379688]
Graph convolutional networks (GCNs) have proven to be an effective approach for 3D human pose estimation.
In this paper, we introduce an iterative graph filtering framework for 3D human pose estimation.
Our approach builds upon the idea of iteratively solving graph filtering with Laplacian regularization.
arXiv Detail & Related papers (2023-07-29T20:46:44Z) - E3Bind: An End-to-End Equivariant Network for Protein-Ligand Docking [20.266157559473342]
We propose E3Bind, an end-to-end equivariant network that iteratively updates the ligand pose.
E3Bind models the protein-ligand interaction through careful consideration of the geometric constraints in docking.
Experiments on standard benchmark datasets demonstrate the superior performance of our end-to-end trainable model.
arXiv Detail & Related papers (2022-10-12T10:25:54Z) - Scene Synthesis via Uncertainty-Driven Attribute Synchronization [52.31834816911887]
This paper introduces a novel neural scene synthesis approach that can capture diverse feature patterns of 3D scenes.
Our method combines the strength of both neural network-based and conventional scene synthesis approaches.
arXiv Detail & Related papers (2021-08-30T19:45:07Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
We present NeuroMorph, a new neural network architecture that takes as input two 3D shapes.
NeuroMorph produces smooth and point-to-point correspondences between them.
It works well for a large variety of input shapes, including non-isometric pairs from different object categories.
arXiv Detail & Related papers (2021-06-17T12:25:44Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z) - Self-supervised Geometric Perception [96.89966337518854]
Self-supervised geometric perception is a framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels.
We show that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.
arXiv Detail & Related papers (2021-03-04T15:34:43Z) - Tensor Representations for Action Recognition [54.710267354274194]
Human actions in sequences are characterized by the complex interplay between spatial features and their temporal dynamics.
We propose novel tensor representations for capturing higher-order relationships between visual features for the task of action recognition.
We use higher-order tensors and so-called Eigenvalue Power Normalization (NEP) which have been long speculated to perform spectral detection of higher-order occurrences.
arXiv Detail & Related papers (2020-12-28T17:27:18Z) - Learning Local Neighboring Structure for Robust 3D Shape Representation [143.15904669246697]
Representation learning for 3D meshes is important in many computer vision and graphics applications.
We propose a local structure-aware anisotropic convolutional operation (LSA-Conv)
Our model produces significant improvement in 3D shape reconstruction compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-04-21T13:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.