論文の概要: ACE-RLHF: Automated Code Evaluation and Socratic Feedback Generation Tool using Large Language Models and Reinforcement Learning with Human Feedback
- arxiv url: http://arxiv.org/abs/2504.04657v1
- Date: Mon, 07 Apr 2025 01:11:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:10:22.674524
- Title: ACE-RLHF: Automated Code Evaluation and Socratic Feedback Generation Tool using Large Language Models and Reinforcement Learning with Human Feedback
- Title(参考訳): ACE-RLHF:大規模言語モデルを用いたコード評価とソクラティックフィードバック生成ツールと人間フィードバックによる強化学習
- Authors: Tasnia Rahman, Sathish A. P. Kumar, Sumit Jha, Arvind Ramanathan,
- Abstract要約: コードフィードバック生成のための大規模言語モデル(LLM)が不可欠である。
LLMはコンパイラが生成したエラーメッセージよりも理解しやすいフィードバックを生成する。
Reinforcement Learning with Human Feedback (RLHF)は、初心者の生徒がスクラッチから対話的にプログラミングをリーン化するのに役立つ。
- 参考スコア(独自算出の注目度): 4.503215272392276
- License:
- Abstract: Automated Program Repair tools are developed for generating feedback and suggesting a repair method for erroneous code. State of the art (SOTA) code repair methods rely on data-driven approaches and often fail to deliver solution for complicated programming questions. To interpret the natural language of unprecedented programming problems, using Large Language Models (LLMs) for code-feedback generation is crucial. LLMs generate more comprehensible feedback than compiler-generated error messages, and Reinforcement Learning with Human Feedback (RLHF) further enhances quality by integrating human-in-the-loop which helps novice students to lean programming from scratch interactively. We are applying RLHF fine-tuning technique for an expected Socratic response such as a question with hint to solve the programming issue. We are proposing code feedback generation tool by fine-tuning LLM with RLHF, Automated Code Evaluation with RLHF (ACE-RLHF), combining two open-source LLM models with two different SOTA optimization techniques. The quality of feedback is evaluated on two benchmark datasets containing basic and competition-level programming questions where the later is proposed by us. We achieved 2-5% higher accuracy than RL-free SOTA techniques using Llama-3-7B-Proximal-policy optimization in automated evaluation and similar or slightly higher accuracy compared to reward model-free RL with AI Feedback (RLAIF). We achieved almost 40% higher accuracy with GPT-3.5 Best-of-n optimization while performing manual evaluation.
- Abstract(参考訳): フィードバックを生成するための自動プログラム修復ツールが開発され、誤ったコードの修復方法が提案されている。
State of the Art (SOTA) のコード修復手法はデータ駆動型アプローチに依存しており、複雑なプログラミング問題に対するソリューションの提供に失敗することが多い。
前例のないプログラミング問題の自然言語を解釈するためには、コードフィードバック生成にLLM(Large Language Models)を用いることが不可欠である。
LLMは、コンパイラが生成したエラーメッセージよりも理解しやすいフィードバックを生成する。Reinforcement Learning with Human Feedback (RLHF)は、初心者学生がスクラッチからリーンプログラミングを対話的に行うのに役立つ、ループ内の人間を統合することで、品質をさらに向上する。
我々は,プログラミング問題を解くためのヒント付き質問などのソクラテス応答に対して,RLHFファインチューニング手法を適用している。
RLHF(ACE-RLHF)を用いたLLMの微調整によるコードフィードバック生成ツールを提案し,2つのオープンソースLLMモデルと2つのSOTA最適化手法を組み合わせた。
フィードバックの質は、2つのベンチマークデータセットで評価され、基本および競合レベルのプログラミング問題が含まれており、後者が提案されている。
Llama-3-7B-Proximal-policyによるAI Feedback (RLAIF) を用いた報酬モデルなしのRLよりも2-5%高い精度を実現した。
手動による評価を行いながら, GPT-3.5 Best-of-n最適化によりほぼ40%の精度を実現した。
関連論文リスト
- Prompting and Fine-tuning Large Language Models for Automated Code Review Comment Generation [5.6001617185032595]
プログラムデータと自然言語データの両方で事前訓練された大きな言語モデルは、コード指向のタスクでうまく機能する傾向にある。
我々は,パラメータ効率,量子化低ランクのオープンソースLarge Language Model (LLM) をコンシューマグレードハードウェア上で微調整し,レビューコメント生成を改善する。
論文 参考訳(メタデータ) (2024-11-15T12:01:38Z) - Self-Evolved Reward Learning for LLMs [45.6910747154447]
RLHF(Reinforcement Learning from Human Feedback)は、言語モデルと人間の嗜好を整合させる重要な手法である。
本稿では、RMが反復的に自己改善するための追加のトレーニングデータを生成する新しいアプローチである自己進化リワード学習(SER:Self-Evolved Reward Learning)を提案する。
以上の結果から,人間による注釈付きデータであっても,自己フィードバックから学習することで,RM性能が向上することが示唆された。
論文 参考訳(メタデータ) (2024-11-01T07:29:03Z) - Sequence to Sequence Reward Modeling: Improving RLHF by Language Feedback [8.601283886845664]
人間のフィードバック(RLHF)からの強化学習は、大規模言語モデル(LLM)と人間の意図と価値を一致させる。
その効果と人気にもかかわらず、RLHFは局所最適化に偏っている。
本稿では,新しいテキストシーケンス・ツー・シーケンス(seq2seq)報酬モデリング手法を提案する。
論文 参考訳(メタデータ) (2024-08-30T16:14:35Z) - ARES: Alternating Reinforcement Learning and Supervised Fine-Tuning for Enhanced Multi-Modal Chain-of-Thought Reasoning Through Diverse AI Feedback [13.154512864498912]
強化学習(RL)と教師付きファインチューニング(SFT)を交互に行う2段階アルゴリズムARESを提案する。
第一に、我々は教師に、各文が問題の解決にどれだけ貢献するかを、CoT(Chain-of-Thought)で得点するように要求する。
次に,教師にRL後の誤った推論の修正を依頼する。補正フィードバックにより,SFTによるRL微調整モデルを安定化する。
論文 参考訳(メタデータ) (2024-06-25T07:20:11Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - Improving Reinforcement Learning from Human Feedback with Efficient Reward Model Ensemble [67.4269821365504]
人間のフィードバックからの強化学習(Reinforcement Learning from Human Feedback, RLHF)は、大きな言語モデルと人間の価値を整合させる手法として広く採用されている。
しかし、RLHFは限られた量の人間の嗜好データで訓練された報酬モデルに依存している。
報奨モデルによりより正確な予測が可能となる報奨アンサンブル法を提案する。
論文 参考訳(メタデータ) (2024-01-30T00:17:37Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
コードの品質を調査した結果,より構造化され,読みやすくなれば,コード生成性能が向上することがわかった。
私たちは、これらの原則を使って既存のプログラムを変換する、新しいデータクリーニングパイプラインを構築します。
提案手法を2つのアルゴリズムコード生成ベンチマークで評価した結果,微調整のCodeLLaMa-7Bでは,元のデータセットの微調整に比べて最大30%性能が向上していることがわかった。
論文 参考訳(メタデータ) (2023-11-25T02:45:50Z) - Reinforced Self-Training (ReST) for Language Modeling [56.75447441157628]
人間からのフィードバック(RLHF)からの強化学習は、人間の好みに合わせることで、大きな言語モデル(LLM)の出力の品質を向上させることができる。
強化自己学習(Reinforced Self-Training, ReST)と呼ばれる, バッチ強化学習(RL)の成長にインスパイアされたLLMを人間の好みに合わせるための簡単なアルゴリズムを提案する。
この結果から,ReSTは自動測定値と機械翻訳ベンチマークの人的評価によって,計算とサンプル効率で翻訳品質を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2023-08-17T14:12:48Z) - The Wisdom of Hindsight Makes Language Models Better Instruction
Followers [84.9120606803906]
強化学習は、人間のフィードバックによる指示に合うように、大きな言語モデルを微調整することに成功している。
そこで本稿では,本論文で提案するアプローチとして,原文を緩和することでフィードバックを指導に変換する手法と,教師付き手法によるアライメント向上のためのモデルをトレーニングする手法を提案する。
言語モデルと命令を整合させる新しいアルゴリズムであるHIR(Hindsight Instruction Relabeling)を提案する。
論文 参考訳(メタデータ) (2023-02-10T12:16:38Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
CodeRLは、事前訓練されたLMと深層強化学習によるプログラム合成タスクのための新しいフレームワークである。
推論中、我々は重要なサンプリング戦略を持つ新しい生成手順を導入する。
モデルバックボーンについては,CodeT5のエンコーダデコーダアーキテクチャを拡張し,学習目標を拡張した。
論文 参考訳(メタデータ) (2022-07-05T02:42:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。