Causal Retrieval with Semantic Consideration
- URL: http://arxiv.org/abs/2504.04700v1
- Date: Mon, 07 Apr 2025 03:04:31 GMT
- Title: Causal Retrieval with Semantic Consideration
- Authors: Hyunseo Shin, Wonseok Hwang,
- Abstract summary: We propose CAWAI, a retrieval model that is trained with dual objectives: semantic and causal relations.<n>Our experiments demonstrate that CAWAI outperforms various models on diverse causal retrieval tasks.<n>We also show that CAWAI exhibits strong zero-shot generalization across scientific domain QA tasks.
- Score: 6.967392207053045
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in large language models (LLMs) have significantly enhanced the performance of conversational AI systems. To extend their capabilities to knowledge-intensive domains such as biomedical and legal fields, where the accuracy is critical, LLMs are often combined with information retrieval (IR) systems to generate responses based on retrieved documents. However, for IR systems to effectively support such applications, they must go beyond simple semantic matching and accurately capture diverse query intents, including causal relationships. Existing IR models primarily focus on retrieving documents based on surface-level semantic similarity, overlooking deeper relational structures such as causality. To address this, we propose CAWAI, a retrieval model that is trained with dual objectives: semantic and causal relations. Our extensive experiments demonstrate that CAWAI outperforms various models on diverse causal retrieval tasks especially under large-scale retrieval settings. We also show that CAWAI exhibits strong zero-shot generalization across scientific domain QA tasks.
Related papers
- Is Relevance Propagated from Retriever to Generator in RAG? [21.82171240511567]
RAG is a framework for incorporating external knowledge, usually in the form of a set of documents retrieved from a collection.<n>We empirically investigate whether a RAG context comprised of topically relevant documents leads to improved downstream performance.
arXiv Detail & Related papers (2025-02-20T20:21:46Z) - Binary Code Similarity Detection via Graph Contrastive Learning on Intermediate Representations [52.34030226129628]
Binary Code Similarity Detection (BCSD) plays a crucial role in numerous fields, including vulnerability detection, malware analysis, and code reuse identification.
In this paper, we propose IRBinDiff, which mitigates compilation differences by leveraging LLVM-IR with higher-level semantic abstraction.
Our extensive experiments, conducted under varied compilation settings, demonstrate that IRBinDiff outperforms other leading BCSD methods in both One-to-one comparison and One-to-many search scenarios.
arXiv Detail & Related papers (2024-10-24T09:09:20Z) - Retrieval Meets Reasoning: Even High-school Textbook Knowledge Benefits Multimodal Reasoning [49.3242278912771]
We introduce a novel multimodal RAG framework named RMR (Retrieval Meets Reasoning)
The RMR framework employs a bi-modal retrieval module to identify the most relevant question-answer pairs.
It significantly boosts the performance of various vision-language models across a spectrum of benchmark datasets.
arXiv Detail & Related papers (2024-05-31T14:23:49Z) - Retrieval-Generation Synergy Augmented Large Language Models [30.53260173572783]
We propose an iterative retrieval-generation collaborative framework.
We conduct experiments on four question answering datasets, including single-hop QA and multi-hop QA tasks.
arXiv Detail & Related papers (2023-10-08T12:50:57Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
Information retrieval has evolved from term-based methods to its integration with advanced neural models.
Recent research has sought to leverage large language models (LLMs) to improve IR systems.
We delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers.
arXiv Detail & Related papers (2023-08-14T12:47:22Z) - Building Interpretable and Reliable Open Information Retriever for New
Domains Overnight [67.03842581848299]
Information retrieval is a critical component for many down-stream tasks such as open-domain question answering (QA)
We propose an information retrieval pipeline that uses entity/event linking model and query decomposition model to focus more accurately on different information units of the query.
We show that, while being more interpretable and reliable, our proposed pipeline significantly improves passage coverages and denotation accuracies across five IR and QA benchmarks.
arXiv Detail & Related papers (2023-08-09T07:47:17Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z) - Neural Methods for Effective, Efficient, and Exposure-Aware Information
Retrieval [7.3371176873092585]
We present novel neural architectures and methods motivated by the specific needs and challenges of information retrieval.
In many real-life IR tasks, the retrieval involves extremely large collections--such as the document index of a commercial Web search engine--containing billions of documents.
arXiv Detail & Related papers (2020-12-21T21:20:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.