論文の概要: On the Robustness of GUI Grounding Models Against Image Attacks
- arxiv url: http://arxiv.org/abs/2504.04716v1
- Date: Mon, 07 Apr 2025 03:58:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:11:16.878117
- Title: On the Robustness of GUI Grounding Models Against Image Attacks
- Title(参考訳): 画像攻撃に対するGUI接地モデルのロバスト性について
- Authors: Haoren Zhao, Tianyi Chen, Zhen Wang,
- Abstract要約: UGroundのような最先端GUIグラウンドモデルのロバスト性を3つの条件下で体系的に評価する。
実験により,GUI接地モデルは対向摂動や低分解能条件に対して高い感度を示すことが明らかとなった。
- 参考スコア(独自算出の注目度): 32.731293426828785
- License:
- Abstract: Graphical User Interface (GUI) grounding models are crucial for enabling intelligent agents to understand and interact with complex visual interfaces. However, these models face significant robustness challenges in real-world scenarios due to natural noise and adversarial perturbations, and their robustness remains underexplored. In this study, we systematically evaluate the robustness of state-of-the-art GUI grounding models, such as UGround, under three conditions: natural noise, untargeted adversarial attacks, and targeted adversarial attacks. Our experiments, which were conducted across a wide range of GUI environments, including mobile, desktop, and web interfaces, have clearly demonstrated that GUI grounding models exhibit a high degree of sensitivity to adversarial perturbations and low-resolution conditions. These findings provide valuable insights into the vulnerabilities of GUI grounding models and establish a strong benchmark for future research aimed at enhancing their robustness in practical applications. Our code is available at https://github.com/ZZZhr-1/Robust_GUI_Grounding.
- Abstract(参考訳): グラフィカルユーザインタフェース(GUI)の基盤モデルは、知的エージェントが複雑なビジュアルインターフェースを理解し、対話できるようにするために不可欠である。
しかし、これらのモデルは自然騒音や逆方向の摂動によって現実のシナリオにおいて顕著な堅牢性に直面する。
本研究では,UGroundのような最先端GUI基盤モデルの強靭性を,自然騒音,未目標敵攻撃,標的敵攻撃の3つの条件下で体系的に評価する。
モバイル,デスクトップ,Webインターフェースを含む多種多様なGUI環境において実験を行った結果,GUI接地モデルが対向的摂動や低分解能条件に対して高い感度を示すことが明らかとなった。
これらの知見はGUI基盤モデルの脆弱性に関する貴重な洞察を与え、実用アプリケーションにおけるその堅牢性を高めることを目的とした将来の研究のための強力なベンチマークを確立する。
私たちのコードはhttps://github.com/ZZhr-1/Robust_GUI_Grounding.comで公開されています。
関連論文リスト
- GUI-Bee: Align GUI Action Grounding to Novel Environments via Autonomous Exploration [56.58744345634623]
MLLMをベースとした自律エージェントGUI-Beeを提案する。
NovelScreenSpotも導入しています。これはGUIアクショングラウンドモデルと新しい環境との整合性をテストするためのベンチマークです。
論文 参考訳(メタデータ) (2025-01-23T18:16:21Z) - UI-TARS: Pioneering Automated GUI Interaction with Native Agents [58.18100825673032]
本稿では,GUIエージェントのネイティブモデルであるUI-TARSを紹介する。
OSWorldベンチマークでは、UI-TARSはスコアが24.6、50ステップが22.7、15ステップが22.7でクロード(それぞれ22.0と14.9)を上回っている。
論文 参考訳(メタデータ) (2025-01-21T17:48:10Z) - GUI Agents: A Survey [129.94551809688377]
グラフィカルユーザインタフェース(GUI)エージェントは、人間とコンピュータのインタラクションを自動化するためのトランスフォーメーションアプローチとして登場した。
GUIエージェントの関心の高まりと基本的な重要性により、ベンチマーク、評価指標、アーキテクチャ、トレーニングメソッドを分類する総合的な調査を提供する。
論文 参考訳(メタデータ) (2024-12-18T04:48:28Z) - Aguvis: Unified Pure Vision Agents for Autonomous GUI Interaction [69.57190742976091]
自律型GUIエージェントのための統合視覚ベースのフレームワークであるAguvisを紹介する。
提案手法は,画像に基づく観察と,自然言語の接地命令を視覚要素に活用する。
これまでの作業の限界に対処するため、モデル内に明確な計画と推論を統合する。
論文 参考訳(メタデータ) (2024-12-05T18:58:26Z) - Improved GUI Grounding via Iterative Narrowing [0.03922370499388702]
本稿では,GUIグラウンディングにおける汎用モデルと微調整モデルの両方の性能向上のために,反復的絞り機構を用いた視覚的プロンプトフレームワークを提案する。
評価のために、様々なUIプラットフォームからなる包括的なベンチマークで手法を検証し、その結果を再現するコードを提供した。
論文 参考訳(メタデータ) (2024-11-18T05:47:12Z) - Navigating the Digital World as Humans Do: Universal Visual Grounding for GUI Agents [20.08996257335876]
環境を視覚的に完全に認識し,GUI上でピクセルレベルの操作を直接実行する,GUIエージェントのためのヒューマンライクなエボディメントを提唱する。
これまでに10MのGUI要素と参照式を1.3Mのスクリーンショット上に収めた、GUIの視覚的接地のための最大のデータセットを収集しました。
ウェブベースの合成データとLLaVAアーキテクチャの若干の適応を含む簡単なレシピは、このような視覚的接地モデルのトレーニングに驚くほど効果的であることを示す。
論文 参考訳(メタデータ) (2024-10-07T17:47:50Z) - Caution for the Environment: Multimodal Agents are Susceptible to Environmental Distractions [68.92637077909693]
本稿では,グラフィカルユーザインタフェース(GUI)環境におけるマルチモーダル大規模言語モデル(MLLM)エージェントの忠実さについて検討する。
ユーザとエージェントの両方が良性であり、環境は悪質ではないが、無関係なコンテンツを含む、一般的な設定が提案されている。
実験結果から、ジェネラリストエージェントや専門的なGUIエージェントなど、最も強力なモデルでさえ、気晴らしの影響を受けやすいことが明らかとなった。
論文 参考訳(メタデータ) (2024-08-05T15:16:22Z) - Towards Evaluating the Robustness of Visual State Space Models [63.14954591606638]
視覚状態空間モデル(VSSM)は視覚知覚タスクにおいて顕著な性能を示した。
しかし、自然と敵対的な摂動の下での頑丈さは依然として重要な懸念事項である。
様々な摂動シナリオ下でのVSSMの頑健さを総合的に評価する。
論文 参考訳(メタデータ) (2024-06-13T17:59:44Z) - Interpretable Computer Vision Models through Adversarial Training:
Unveiling the Robustness-Interpretability Connection [0.0]
解釈可能性は、モデルを現実世界にデプロイする際には、堅牢性と同じくらい不可欠です。
標準モデルは、ロバストと比較して敵の攻撃に対してより感受性が高く、その学習された表現は人間にはあまり意味がない。
論文 参考訳(メタデータ) (2023-07-04T13:51:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。