論文の概要: KunPeng: A Global Ocean Environmental Model
- arxiv url: http://arxiv.org/abs/2504.04766v1
- Date: Mon, 07 Apr 2025 06:41:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:14:03.913566
- Title: KunPeng: A Global Ocean Environmental Model
- Title(参考訳): KunPeng: 地球環境モデル
- Authors: Yi Zhao, Jiaqi Li, Haitao Xia, Tianjiao Zhang, Zerong Zeng, Tianyu Ren, Yucheng Zhang, Chao Zhu, Shengtong Xu, Hongchun Yuan,
- Abstract要約: 本研究では,KunPeng大洋環境予測モデルを構築し,気象学的な大規模モデル手法を海洋領域に移行した。
陸域境界における急勾配による発散を効果的に訓練するための地形適応型マスク拘束機構を提案する。
- 参考スコア(独自算出の注目度): 5.565814778529731
- License:
- Abstract: Inspired by the similarity of the atmosphere-ocean physical coupling mechanism, this study innovatively migrates meteorological large-model techniques to the ocean domain, constructing the KunPeng global ocean environmental prediction model. Aimed at the discontinuous characteristics of marine space, we propose a terrain-adaptive mask constraint mechanism to mitigate effectively training divergence caused by abrupt gradients at land-sea boundaries. To fully integrate far-, medium-, and close-range marine features, a longitude-cyclic deformable convolution network (LC-DCN) is employed to enhance the dynamic receptive field, achieving refined modeling of multi-scale oceanic characteristics. A Deformable Convolution-enhanced Multi-Step Prediction module (DC-MTP) is employed to strengthen temporal dependency feature extraction capabilities. Experimental results demonstrate that this model achieves an average ACC of 0.80 in 15-day global predictions at 0.25$^\circ$ resolution, outperforming comparative models by 0.01-0.08. The average mean squared error (MSE) is 0.41 (representing a 5%-31% reduction) and the average mean absolute error (MAE) is 0.44 (0.6%-21% reduction) compared to other models. Significant improvements are particularly observed in sea surface parameter prediction, deep-sea region characterization, and current velocity field forecasting. Through a horizontal comparison of the applicability of operators at different scales in the marine domain, this study reveals that local operators significantly outperform global operators under slow-varying oceanic processes, demonstrating the effectiveness of dynamic feature pyramid representations in predicting marine physical parameters.
- Abstract(参考訳): 大気-海洋の物理的カップリング機構の類似性から着想を得た本研究では,KunPengグローバルな海洋環境予測モデルを構築し,気象大モデル技術を海洋領域に革新的に移行した。
陸域境界における急激な勾配による発散を効果的に訓練するための地形適応型マスク拘束機構を提案する。
遠距離・中距離・近距離の海洋特性を完全に統合するために,多スケール海洋特性の精密なモデリングを実現するために,経度循環型変形性畳み込みネットワーク (LC-DCN) を用いて動的受容場を強化する。
Deformable Convolution-enhanced Multi-Step Prediction Module (DC-MTP) を用いて時間依存性の特徴抽出機能を強化する。
実験の結果,15日間のグローバル予測では平均ACCが0.80$^\circ$で0.25$^\circ$で達成され,0.01-0.08で比較モデルを上回った。
平均二乗誤差(MSE)は0.41(5%-31%)、平均絶対誤差(MAE)は0.44(0.6%-21%)である。
特に海面パラメーター予測,深海域特性評価,流速場予測において顕著な改善が見られた。
本研究は, 海洋域における異なるスケールの演算子の適用可能性の水平比較を通じて, 局所演算子は, 緩やかな海洋過程下でのグローバル演算子よりも有意に優れており, 海洋物理パラメータの予測における動的特徴ピラミッド表現の有効性を示す。
関連論文リスト
- GeoFUSE: A High-Efficiency Surrogate Model for Seawater Intrusion Prediction and Uncertainty Reduction [0.10923877073891446]
海岸帯水層への海水侵入は地下水資源に重大な脅威をもたらす。
ディープラーニングに基づく新しいサロゲートフレームワークGeoFUSEを開発した。
ワシントン州のビーバークリーク潮流-河床平原系の2次元断面にGeoFUSEを適用した。
論文 参考訳(メタデータ) (2024-10-26T08:10:32Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Advances in Land Surface Model-based Forecasting: A comparative study of LSTM, Gradient Boosting, and Feedforward Neural Network Models as prognostic state emulators [4.852378895360775]
地表面プロセスのシミュレーションによる実験研究の高速化における3つの代理モデルの効率性を評価する。
以上の結果から, LSTMネットワークは, 予測期間を経た平均モデル全体の精度は高いが, 慎重に調整した場合は, 大陸の長距離予測に優れることがわかった。
論文 参考訳(メタデータ) (2024-07-23T13:26:05Z) - OXYGENERATOR: Reconstructing Global Ocean Deoxygenation Over a Century with Deep Learning [50.365198230613956]
既存の専門家が支配する数値シミュレーションは、地球温暖化や人的活動によって引き起こされる動的変動に追いつかなかった。
1920年から2023年までの世界の海洋脱酸素モデルを再構築するために,最初の深層学習モデルであるOxyGeneratorを提案する。
論文 参考訳(メタデータ) (2024-05-12T09:32:40Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Surrogate Modelling for Sea Ice Concentration using Lightweight Neural
Ensemble [0.3626013617212667]
本稿ではLANE-SIという適応的な代理モデル手法を提案する。
異なる損失関数を持つ比較的単純な深層学習モデルのアンサンブルを用いて、特定水域における海氷濃度の予測を行う。
我々は,カラ海における最先端物理ベースの予測システムSEAS5に対して,20%の改善を実現している。
論文 参考訳(メタデータ) (2023-12-07T14:48:30Z) - OceanNet: A principled neural operator-based digital twin for regional oceans [0.0]
本研究は、海洋循環のための原理的ニューラルオペレーターベースのデジタルツインであるOceanNetを紹介する。
オーシャンネットは北西大西洋西部境界流(ガルフストリーム)に適用される
論文 参考訳(メタデータ) (2023-10-01T23:06:17Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Dynamic Basis Function Interpolation for Adaptive In Situ Data Integration in Ocean Modeling [1.4549461207028445]
本研究では,地球系モデル (ESMs) とIn situ buoy測定を組み合わせ,海洋温度予測の精度を向上させる手法を提案する。
この技術は、季節性などの特徴を保存しながら、ブイ測定とともにESMで識別される動的テクスティタンドモードを利用して精度を向上させる。
論文 参考訳(メタデータ) (2023-01-11T21:21:02Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
シーライス分散と分布を効率的に推定するためのシーライス適応格子追跡手法を提案する。
具体的には、局所的な海洋特性に基づいて、オーシャンモデルの格子グラフにノードをマージすることで、適応的な空間メッシュを生成する。
提案手法は, 変動する気候下での海洋ライス寄生圧マップの予測モデルにより, 積極的養殖管理の促進を約束するものである。
論文 参考訳(メタデータ) (2021-06-24T17:29:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。