論文の概要: Advances in Land Surface Model-based Forecasting: A comparative study of LSTM, Gradient Boosting, and Feedforward Neural Network Models as prognostic state emulators
- arxiv url: http://arxiv.org/abs/2407.16463v1
- Date: Tue, 23 Jul 2024 13:26:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 17:16:18.444114
- Title: Advances in Land Surface Model-based Forecasting: A comparative study of LSTM, Gradient Boosting, and Feedforward Neural Network Models as prognostic state emulators
- Title(参考訳): ランドサーフェスモデルに基づく予測の進歩:予測状態エミュレータとしてのLSTM、グラディエントブースティング、フィードフォワードニューラルネットワークモデルの比較研究
- Authors: Marieke Wesselkamp, Matthew Chantry, Ewan Pinnington, Margarita Choulga, Souhail Boussetta, Maria Kalweit, Joschka Boedecker, Carsten F. Dormann, Florian Pappenberger, Gianpaolo Balsamo,
- Abstract要約: 地表面プロセスのシミュレーションによる実験研究の高速化における3つの代理モデルの効率性を評価する。
以上の結果から, LSTMネットワークは, 予測期間を経た平均モデル全体の精度は高いが, 慎重に調整した場合は, 大陸の長距離予測に優れることがわかった。
- 参考スコア(独自算出の注目度): 4.852378895360775
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most useful weather prediction for the public is near the surface. The processes that are most relevant for near-surface weather prediction are also those that are most interactive and exhibit positive feedback or have key role in energy partitioning. Land surface models (LSMs) consider these processes together with surface heterogeneity and forecast water, carbon and energy fluxes, and coupled with an atmospheric model provide boundary and initial conditions. This numerical parametrization of atmospheric boundaries being computationally expensive, statistical surrogate models are increasingly used to accelerated progress in experimental research. We evaluated the efficiency of three surrogate models in speeding up experimental research by simulating land surface processes, which are integral to forecasting water, carbon, and energy fluxes in coupled atmospheric models. Specifically, we compared the performance of a Long-Short Term Memory (LSTM) encoder-decoder network, extreme gradient boosting, and a feed-forward neural network within a physics-informed multi-objective framework. This framework emulates key states of the ECMWF's Integrated Forecasting System (IFS) land surface scheme, ECLand, across continental and global scales. Our findings indicate that while all models on average demonstrate high accuracy over the forecast period, the LSTM network excels in continental long-range predictions when carefully tuned, the XGB scores consistently high across tasks and the MLP provides an excellent implementation-time-accuracy trade-off. The runtime reduction achieved by the emulators in comparison to the full numerical models are significant, offering a faster, yet reliable alternative for conducting numerical experiments on land surfaces.
- Abstract(参考訳): 一般大衆にとって最も有用な気象予報は地表付近である。
地表付近の天気予報に最も関係しているプロセスは、最もインタラクティブでポジティブなフィードバックを示すプロセスや、エネルギー分配において重要な役割を持つプロセスである。
土地表面モデル(LSM)は、これらの過程を表面の不均一性と予測水、炭素とエネルギーのフラックスと共に考慮し、大気モデルと組み合わせることで境界条件と初期条件を提供する。
大気境界の数値的パラメトリゼーションは計算に高価であり、統計代用モデルが実験研究の進展を加速するためにますます利用されている。
本研究では, 複合大気モデルにおける水, 炭素, エネルギーフラックスの予測に不可欠な地表面過程をシミュレートし, 実験研究を高速化する上での3つの代理モデルの効率性を評価した。
具体的には,Long-Short Term Memory(LSTM)エンコーダ・デコーダ・ネットワーク,極端な勾配向上,物理インフォームド多目的フレームワーク内のフィードフォワードニューラルネットワークの性能を比較した。
このフレームワークは、大陸規模と世界規模で、ECMWFのIFS(Integrated Forecasting System)ランドサーフェス・スキーム(ECLand)の重要な状態をエミュレートする。
以上の結果から, LSTMネットワークは, 予測期間を通じて平均モデル全体の精度が向上するのに対して, XGB はタスク全体にわたって常に高いスコアを示し, MLP は優れた実装時間精度のトレードオフを提供することがわかった。
エミュレータが全数値モデルと比較して達成した実行時の削減は重要であり、陸上での数値実験を行うための高速で信頼性の高い代替手段を提供する。
関連論文リスト
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Leveraging data-driven weather models for improving numerical weather prediction skill through large-scale spectral nudging [1.747339718564314]
本研究は,気象予測に対する物理学的アプローチとAI的アプローチの相対的強みと弱みについて述べる。
GEM予測された大規模状態変数をGraphCast予測に対してスペクトル的に評価するハイブリッドNWP-AIシステムを提案する。
その結果,このハイブリッド手法は,GEMモデルの予測能力を高めるために,GraphCastの強みを活用できることが示唆された。
論文 参考訳(メタデータ) (2024-07-08T16:39:25Z) - Probabilistic Emulation of a Global Climate Model with Spherical DYffusion [15.460280166612119]
本研究では, 高精度で物理的に整合した地球規模の気候アンサンブルシミュレーションを作成した最初の条件生成モデルを提案する。
我々のモデルは、動的インフォームド拡散フレームワーク(DYffusion)と、球状フーリエニューラル演算子(SFNO)アーキテクチャを統合する。
このモデルは、気候モデルエミュレーションのための金本位に近い性能を達成し、既存のアプローチを上回り、有望なアンサンブルスキルを実証する。
論文 参考訳(メタデータ) (2024-06-21T00:16:55Z) - How far are today's time-series models from real-world weather forecasting applications? [22.68937280154092]
WEATHER-5Kは、現実世界のシナリオをよりよく反映した観測気象データの包括的収集である。
これにより、モデルのより良いトレーニングと、TSFモデルの現実の予測能力のより正確な評価が可能になる。
我々は,学術的TSFモデルと実世界の天気予報アプリケーションとのギャップを,研究者に明確に評価する。
論文 参考訳(メタデータ) (2024-06-20T15:18:52Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Numerical Weather Forecasting using Convolutional-LSTM with Attention
and Context Matcher Mechanisms [10.759556555869798]
本稿では,高解像度気象データを予測するための新しいディープラーニングアーキテクチャを提案する。
我々の気象モデルは,ベースラインの深層学習モデルと比較して,大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2021-02-01T08:30:42Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
地球系モデル(ESM)は、気候変動シナリオの将来の予測を生成するためにしばしば用いられる。
妥協として、エミュレータはかなり安価であるが、ESMの複雑さを全て備えているわけではない。
本稿では, ESMエミュレータとして, 条件付き生成逆数ネットワーク(GAN)の使用を実証する。
論文 参考訳(メタデータ) (2020-11-23T20:13:37Z) - Improving data-driven global weather prediction using deep convolutional
neural networks on a cubed sphere [7.918783985810551]
深層畳み込みニューラルネットワーク(CNN)を用いたデータ駆動型世界天気予報フレームワークを提案する。
このフレームワークの新しい開発には、オフラインの体積保存的マッピングから立方体球格子へのマッピングが含まれる。
我々のモデルでは、入力された大気状態の少ない変数から複雑な表面温度パターンを予測することができる。
論文 参考訳(メタデータ) (2020-03-15T19:57:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。