OrderChain: A General Prompting Paradigm to Improve Ordinal Understanding Ability of MLLM
- URL: http://arxiv.org/abs/2504.04801v1
- Date: Mon, 07 Apr 2025 07:53:44 GMT
- Title: OrderChain: A General Prompting Paradigm to Improve Ordinal Understanding Ability of MLLM
- Authors: Jinhong Wang, Shuo Tong, Jian liu, Dongqi Tang, Weiqiang Wang, Wentong Li, Hongxia Xu, Danny Chen, Jintai Chen, Jian Wu,
- Abstract summary: This paper presents OrderChain, a novel and general prompting paradigm that improves the ordinal understanding ability of MLLMs by specificity and commonality modeling.<n> Comprehensive experiments show that a Large Language and Vision Assistant model with our OrderChain improves baseline LLaVA significantly on diverse OR datasets.<n>To our best knowledge, our OrderChain is the first work that augments MLLMs for OR tasks, and the effectiveness is witnessed across a spectrum of OR datasets.
- Score: 28.249198952483685
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Despite the remarkable progress of multimodal large language models (MLLMs), they continue to face challenges in achieving competitive performance on ordinal regression (OR; a.k.a. ordinal classification). To address this issue, this paper presents OrderChain, a novel and general prompting paradigm that improves the ordinal understanding ability of MLLMs by specificity and commonality modeling. Specifically, our OrderChain consists of a set of task-aware prompts to facilitate the specificity modeling of diverse OR tasks and a new range optimization Chain-of-Thought (RO-CoT), which learns a commonality way of thinking about OR tasks by uniformly decomposing them into multiple small-range optimization subtasks. Further, we propose a category recursive division (CRD) method to generate instruction candidate category prompts to support RO-CoT automatic optimization. Comprehensive experiments show that a Large Language and Vision Assistant (LLaVA) model with our OrderChain improves baseline LLaVA significantly on diverse OR datasets, e.g., from 47.5% to 93.2% accuracy on the Adience dataset for age estimation, and from 30.0% to 85.7% accuracy on the Diabetic Retinopathy dataset. Notably, LLaVA with our OrderChain also remarkably outperforms state-of-the-art methods by 27% on accuracy and 0.24 on MAE on the Adience dataset. To our best knowledge, our OrderChain is the first work that augments MLLMs for OR tasks, and the effectiveness is witnessed across a spectrum of OR datasets.
Related papers
- MLLM-Selector: Necessity and Diversity-driven High-Value Data Selection for Enhanced Visual Instruction Tuning [69.7347209018861]
We introduce MLLM-Selector, an automated approach that identifies valuable data for visual instruction tuning.
We calculate necessity scores for each sample in the VIT data pool to identify samples pivotal for enhancing model performance.
Our findings underscore the importance of mixing necessity and diversity in data choice, leading to the creation of MLLM-Selector.
arXiv Detail & Related papers (2025-03-26T12:42:37Z) - Large Language Model as Meta-Surrogate for Data-Driven Many-Task Optimization: A Proof-of-Principle Study [11.452011929848844]
This study proposes a novel meta-surrogate framework to assist many-task optimization.<n>We formulate a unified framework for many-task fitness prediction, by defining a universal model with metadata to fit a group of problems.<n>Our framework supports dual-level knowledge transfer -- at both the surrogate and individual levels -- enhancing optimization efficiency and robustness.
arXiv Detail & Related papers (2025-03-11T11:13:11Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks.<n>Existing instruction-tuning datasets only provide phrase-level answers without any intermediate rationales.<n>We introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales.
arXiv Detail & Related papers (2024-12-06T18:14:24Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - Continual LLaVA: Continual Instruction Tuning in Large Vision-Language Models [93.5327725085853]
Continual LLaVA is a rehearsal-free method tailored for continual instruction tuning in LVLMs.
Experiments indicate that the proposed Continual LLaVA outperforms previous methods by significantly reducing the forgetting during the continual instruction tuning process.
arXiv Detail & Related papers (2024-11-04T19:55:32Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - RAVEN: Multitask Retrieval Augmented Vision-Language Learning [5.1583788731239455]
The scaling of large language models to encode all the world's knowledge is unsustainable and has exacerbated resource barriers.
Retrieval-Augmented Generation (RAG) presents a potential solution, yet its application to vision-language models (VLMs) is under explored.
This paper introduces RAVEN, a retrieval augmented VLM framework that enhances base VLMs through efficient, task specific fine-tuning.
arXiv Detail & Related papers (2024-06-27T13:08:35Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.