論文の概要: Embracing Dynamics: Dynamics-aware 4D Gaussian Splatting SLAM
- arxiv url: http://arxiv.org/abs/2504.04844v1
- Date: Mon, 07 Apr 2025 08:56:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 20:53:39.573605
- Title: Embracing Dynamics: Dynamics-aware 4D Gaussian Splatting SLAM
- Title(参考訳): ダイナミクスを取り入れる:ダイナミクスを意識した4Dガウス散乱SLAM
- Authors: Zhicong Sun, Jacqueline Lo, Jinxing Hu,
- Abstract要約: D4DGS-SLAMは動的環境のための4DGSマップ表現に基づく最初のSLAMである。
時間次元をシーン表現に組み込むことで、D4DGS-SLAMは動的シーンの高品質な再構成を可能にする。
提案手法は,カメラのポーズトラッキングとマップの品質の両方において,最先端の手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simultaneous localization and mapping (SLAM) technology now has photorealistic mapping capabilities thanks to the real-time high-fidelity rendering capability of 3D Gaussian splatting (3DGS). However, due to the static representation of scenes, current 3DGS-based SLAM encounters issues with pose drift and failure to reconstruct accurate maps in dynamic environments. To address this problem, we present D4DGS-SLAM, the first SLAM method based on 4DGS map representation for dynamic environments. By incorporating the temporal dimension into scene representation, D4DGS-SLAM enables high-quality reconstruction of dynamic scenes. Utilizing the dynamics-aware InfoModule, we can obtain the dynamics, visibility, and reliability of scene points, and filter stable static points for tracking accordingly. When optimizing Gaussian points, we apply different isotropic regularization terms to Gaussians with varying dynamic characteristics. Experimental results on real-world dynamic scene datasets demonstrate that our method outperforms state-of-the-art approaches in both camera pose tracking and map quality.
- Abstract(参考訳): 同時ローカライゼーションとマッピング(SLAM)技術は、3Dガウススプラッティング(3DGS)のリアルタイム高忠実性レンダリング機能のおかげで、光写実性マッピング機能を持つようになった。
しかし、シーンの静的表現のため、現在の3DGSベースのSLAMは、ポーズドリフトと動的環境における正確な地図の再構築に失敗した問題に遭遇する。
この問題に対処するため,動的環境に対する4DGSマップ表現に基づく最初のSLAM法であるD4DGS-SLAMを提案する。
時間次元をシーン表現に組み込むことで、D4DGS-SLAMは動的シーンの高品質な再構成を可能にする。
動的に認識されたInfoModuleを利用することで、シーンポイントのダイナミックス、可視性、信頼性を取得し、それに従って安定した静的ポイントをフィルタリングする。
ガウス点を最適化するとき、異なる等方正則化項を様々な動的特性を持つガウスに適用する。
実世界の動的シーンデータセットによる実験結果から,本手法はカメラポーズ追跡とマップ品質の両方において最先端の手法よりも優れていることが示された。
関連論文リスト
- WildGS-SLAM: Monocular Gaussian Splatting SLAM in Dynamic Environments [48.51530726697405]
WildGS-SLAMは、動的環境を扱うために設計された、堅牢で効率的な単分子RGB SLAMシステムである。
本研究では,浅い多層パーセプトロンとDINOv2の特徴によって予測される不確実性マップを導入し,追跡とマッピングの両方において動的物体除去を誘導する。
その結果,WildGS-SLAMの動的環境における性能は最先端の手法に比べて優れていた。
論文 参考訳(メタデータ) (2025-04-04T19:19:40Z) - CoDa-4DGS: Dynamic Gaussian Splatting with Context and Deformation Awareness for Autonomous Driving [12.006435326659526]
ダイナミックなシーンレンダリングを改善するために,新しい4次元ガウススプラッティング(4DGS)手法を提案する。
具体的には,2次元セマンティックセグメンテーション基盤モデルを用いて,ガウスの4次元セマンティック特徴を自己監督する。
意味的変形特徴と時間的変形特徴の両方を集約して符号化することにより、各ガウスは潜在的な変形補償のための手がかりを備える。
論文 参考訳(メタデータ) (2025-03-09T19:58:51Z) - GARAD-SLAM: 3D GAussian splatting for Real-time Anti Dynamic SLAM [9.060527946525381]
動的シーンに適したリアルタイム3DGSベースのSLAMシステムであるGARAD-SLAMを提案する。
追跡の面では、ガウスの動的セグメンテーションを直接実行し、それらをフロントエンドにマッピングして動的点ラベルを得る。
実世界のデータセットを用いた結果から,本手法はベースライン手法と比較して,トラッキングに競争力があることが示された。
論文 参考訳(メタデータ) (2025-02-05T14:44:17Z) - 4D Gaussian Splatting: Modeling Dynamic Scenes with Native 4D Primitives [116.2042238179433]
本稿では,動的シーンを非拘束な4次元ボリューム学習問題とみなす。
本研究では,4次元ガウス原始体の集合を対象とした動的シーンを明示的な幾何学的特徴と外観的特徴で表現する。
このアプローチは、下層のフォトリアリスティック時間体積を適合させることで、空間と時間の関連情報をキャプチャすることができる。
特に、我々の4DGSモデルは、複雑なダイナミックシーンのための、高解像度で斬新なビューのリアルタイムレンダリングをサポートする最初のソリューションです。
論文 参考訳(メタデータ) (2024-12-30T05:30:26Z) - UrbanGS: Semantic-Guided Gaussian Splatting for Urban Scene Reconstruction [86.4386398262018]
UrbanGSは2Dセマンティックマップと既存の動的ガウスアプローチを使って静的オブジェクトとシーンを区別する。
動的オブジェクトに対して、学習可能な時間埋め込みを用いて時間情報を集約する。
提案手法は, 修復の質と効率性において, 最先端の手法より優れている。
論文 参考訳(メタデータ) (2024-12-04T16:59:49Z) - Event-boosted Deformable 3D Gaussians for Dynamic Scene Reconstruction [50.873820265165975]
本稿では,高時間分解能連続運動データと動的シーン再構成のための変形可能な3D-GSを併用したイベントカメラについて紹介する。
本稿では、3次元再構成としきい値モデリングの両方を大幅に改善する相互強化プロセスを作成するGS-Thresholdジョイントモデリング戦略を提案する。
提案手法は,合成および実世界の動的シーンを用いた最初のイベント包摂型4Dベンチマークであり,その上で最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-11-25T08:23:38Z) - EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via
Self-Supervision [85.17951804790515]
EmerNeRFは動的駆動シーンの時空間表現を学習するためのシンプルだが強力なアプローチである。
シーンの幾何学、外観、動き、セマンティクスを自己ブートストラップで同時にキャプチャする。
本手法はセンサシミュレーションにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2023-11-03T17:59:55Z) - Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis [58.5779956899918]
動的シーンビュー合成と6自由度(6-DOF)追跡のタスクを同時に処理する手法を提案する。
我々は、シーンを3Dガウスアンのコレクションとしてモデル化する最近の研究に触発された、分析バイシンセサイザーの枠組みに従う。
我々は,1人称視点合成,動的合成シーン合成,4次元映像編集など,我々の表現によって実現された多数のダウンストリームアプリケーションを紹介した。
論文 参考訳(メタデータ) (2023-08-18T17:59:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。