論文の概要: Simulating Persuasive Dialogues on Meat Reduction with Generative Agents
- arxiv url: http://arxiv.org/abs/2504.04872v1
- Date: Mon, 07 Apr 2025 09:27:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:11:45.962209
- Title: Simulating Persuasive Dialogues on Meat Reduction with Generative Agents
- Title(参考訳): 生成剤による肉の減量に関する説得的対話のシミュレーション
- Authors: Georg Ahnert, Elena Wurth, Markus Strohmaier, Jutta Mata,
- Abstract要約: 肉の減肉はヒトと惑星の健康に恩恵を与えるが、社会的規範は肉を共有食の中心に保ち続ける。
本稿では,大規模言語モデルに基づく生成エージェント間の肉の減肉に関するマルチラウンド対話のシミュレーション研究について述べる。
- 参考スコア(独自算出の注目度): 1.571816792769611
- License:
- Abstract: Meat reduction benefits human and planetary health, but social norms keep meat central in shared meals. To date, the development of communication strategies that promote meat reduction while minimizing social costs has required the costly involvement of human participants at each stage of the process. We present work in progress on simulating multi-round dialogues on meat reduction between Generative Agents based on large language models (LLMs). We measure our main outcome using established psychological questionnaires based on the Theory of Planned Behavior and additionally investigate Social Costs. We find evidence that our preliminary simulations produce outcomes that are (i) consistent with theoretical expectations; and (ii) valid when compared to data from previous studies with human participants. Generative agent-based models are a promising tool for identifying novel communication strategies on meat reduction-tailored to highly specific participant groups-to then be tested in subsequent studies with human participants.
- Abstract(参考訳): 肉の減肉はヒトと惑星の健康に恩恵を与えるが、社会的規範は肉を共有食の中心に保ち続ける。
これまで, 肉の減肉を促進しつつ, 社会的コストを最小限に抑えるコミュニケーション戦略の開発には, プロセスの各段階において, 人的参加のコストがかかることが求められてきた。
本稿では,大規模言語モデル(LLM)に基づく生成エージェント間の肉の減肉に関するマルチラウンド対話のシミュレーション研究について述べる。
本研究は,計画行動理論に基づく確立された心理アンケートを用いて,主要な結果を測定するとともに,社会的コストについても検討する。
予備シミュレーションが結果を生み出す証拠を見つける。
一 理論上の期待に沿うこと、及び
(II) 過去の研究データとヒトの参加者のデータを比較すると, 有効である。
生成エージェントベースのモデルは、肉の減量に関する新しいコミュニケーション戦略を特定するための有望なツールである。
関連論文リスト
- AgentSociety: Large-Scale Simulation of LLM-Driven Generative Agents Advances Understanding of Human Behaviors and Society [32.849311155921264]
本稿では,現実的な社会環境を統合した大規模社会シミュレータであるAgentSocietyを提案する。
提案したシミュレーターに基づいて,500万件のインタラクションをシミュレートし,10万件以上のエージェントの社会生活を生成する。
偏極、炎症性メッセージの普及、普遍的ベーシック・インカム・ポリシーの効果、ハリケーンなどの外部ショックの影響の4つに焦点をあてる。
論文 参考訳(メタデータ) (2025-02-12T15:27:07Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - NegotiationToM: A Benchmark for Stress-testing Machine Theory of Mind on Negotiation Surrounding [55.38254464415964]
現在、マインド評価の理論は、機械生成データやゲーム設定を用いたテストモデルに焦点を合わせており、ショートカットや素早い相関が生じる傾向にある。
我々は,多次元精神状態を取り巻く実世界の交渉において,ストレステストマシンToMのための新しいベンチマークであるNegotiationToMを紹介する。
論文 参考訳(メタデータ) (2024-04-21T11:51:13Z) - An Annotated Dataset for Explainable Interpersonal Risk Factors of
Mental Disturbance in Social Media Posts [0.0]
ソーシャルメディア上での精神障害に影響を及ぼす人為的リスクファクター(IRF)の分類と説明を伴う注釈付きデータセットの構築とリリースを行う。
我々は,TBeとPBuのパターンをユーザの歴史的ソーシャルメディアプロファイルの感情スペクトルで検出することにより,将来的な研究方向のベースラインモデルを構築し,リアルタイムなパーソナライズされたAIモデルを開発する。
論文 参考訳(メタデータ) (2023-05-30T04:08:40Z) - Large Language Models as Zero-Shot Human Models for Human-Robot Interaction [12.455647753787442]
大型言語モデル(LLM)は、人間とロボットの相互作用のためのゼロショット人間モデルとして機能する。
LLMは目的のモデルに匹敵する性能を達成する。
シミュレーションされた信頼に基づくテーブルクリーニングタスクのケーススタディを提案する。
論文 参考訳(メタデータ) (2023-03-06T23:16:24Z) - Human-Robot Commensality: Bite Timing Prediction for Robot-Assisted
Feeding in Groups [18.367472953664016]
我々は、ソーシャルダイニングのシナリオにおいて、ロボットがいつ給食すべきかを予測するために、データ駆動モデルを開発する。
マルチモーダルなHuman-Human Commensalityデータセットを用いて、人間-Human Commensalityの振る舞いを分析する。
論文 参考訳(メタデータ) (2022-07-07T14:52:58Z) - Self-supervised Social Relation Representation for Human Group Detection [18.38523753680367]
人間のグループ検出のための新しい2段階のマルチヘッドフレームワークを提案する。
第1段階では,人間行動シミュレーター・ヘッドを提案し,ソーシャル・リレーション・フィーチャの埋め込みを学習する。
第2段階では,社会関係の埋め込みに基づいて,人間集団検出のための自己注意型ネットワークを開発する。
論文 参考訳(メタデータ) (2022-03-08T04:26:07Z) - Didn't see that coming: a survey on non-verbal social human behavior
forecasting [47.99589136455976]
近年,非言語的社会的行動予測が研究コミュニティの関心を集めている。
人間とロボットの相互作用や社会的に認識された人間のモーション生成への直接的な応用は、非常に魅力的な分野である。
本稿では,複数の対話エージェントに対する行動予測問題を,社会的信号予測と人間の動作予測の分野の統合を目的とした汎用的な方法で定義する。
論文 参考訳(メタデータ) (2022-03-04T18:25:30Z) - PHASE: PHysically-grounded Abstract Social Events for Machine Social
Perception [50.551003004553806]
私たちは、物理的に根拠のある抽象的なソーシャルイベント、フェーズのデータセットを作成します。
フェーズは人間の実験によって検証され、人間は社会出来事において豊かな相互作用を知覚する。
ベースラインモデルとして,最新のフィードフォワードニューラルネットワークよりも優れたベイズ逆計画手法SIMPLEを導入する。
論文 参考訳(メタデータ) (2021-03-02T18:44:57Z) - Dialogue Response Ranking Training with Large-Scale Human Feedback Data [52.12342165926226]
ソーシャルメディアのフィードバックデータを利用して、フィードバック予測のための大規模なトレーニングデータセットを構築します。
我々は,1300万対の人間のフィードバックデータに基づくGPT-2モデルであるDialogRPTを訓練した。
我々のランキングは、Redditのフィードバックを予測する上で、従来のダイアログの難易度ベースラインよりも優れています。
論文 参考訳(メタデータ) (2020-09-15T10:50:05Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。