Observation of topology of non-Hermitian systems without chiral symmetry
- URL: http://arxiv.org/abs/2504.15620v1
- Date: Tue, 22 Apr 2025 06:21:24 GMT
- Title: Observation of topology of non-Hermitian systems without chiral symmetry
- Authors: Shuo Wang, Zhengjie Kang, Hao Li, Jiaojiao Li, Yuanjie Zhang, Zhihuang Luo,
- Abstract summary: We propose a general approach for measuring the topological invariants of one-dimensional non-Hermitian systems.<n>By utilizing a dilation method, we realize a non-Hermitian system without chiral symmetry.<n>In addition to examining the topology of the eigenstates, our experiment also reveals the topological structure of the energy band.
- Score: 10.285214278728528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Topological invariants are crucial for characterizing topological systems. However, experimentally measuring them presents a significant challenge, especially in non-Hermitian systems where the biorthogonal eigenvectors are often necessary. We propose a general approach for measuring the topological invariants of one-dimensional non-Hermitian systems, which can be derived from the spin textures of right eigenstates. By utilizing a dilation method, we realize a non-Hermitian system without chiral symmetry on a two-qubit nuclear magnetic resonance system and measure the winding number associated with the eigenstates. In addition to examining the topology of the eigenstates, our experiment also reveals the topological structure of the energy band, which differs from that in chiral systems. Our work paves the way for further exploration of complex topological properties in non-Hermitian systems without chiral symmetry.
Related papers
- Observation of non-Hermitian bulk-boundary correspondence in non-chiral non-unitary quantum dynamics of single photons [31.05848822220465]
In non-Hermitian systems, preserved chiral symmetry is one of the key ingredients, which plays a pivotal role in determining non-Hermitian topology.<n>We theoretically predict and experimentally demonstrate the bulk-boundary correspondence of a one-dimensional (1D) non-Hermitian system with chiral symmetry breaking.
arXiv Detail & Related papers (2025-04-07T09:43:43Z) - Nonlinearity-driven Topology via Spontaneous Symmetry Breaking [79.16635054977068]
We consider a chain of parametrically-driven quantum resonators coupled only via weak nearest-neighbour cross-Kerr interaction.<n>Topology is dictated by the structure of the Kerr nonlinearity, yielding a non-trivial bulk-boundary correspondence.
arXiv Detail & Related papers (2025-03-15T00:20:45Z) - Topological nature of edge states for one-dimensional systems without symmetry protection [46.87902365052209]
We numerically verify and analytically prove a winding number invariant that correctly predicts the number of edge states in one-dimensional, nearest-neighbour (between unit cells)<n>Our invariant is invariant under unitary and similarity transforms.
arXiv Detail & Related papers (2024-12-13T19:44:54Z) - Exceptional Points and Stability in Nonlinear Models of Population Dynamics having $\mathcal{PT}$ symmetry [49.1574468325115]
We analyze models governed by the replicator equation of evolutionary game theory and related Lotka-Volterra systems of population dynamics.<n>We study the emergence of exceptional points in two cases: (a) when the governing symmetry properties are tied to global properties of the models, and (b) when these symmetries emerge locally around stationary states.
arXiv Detail & Related papers (2024-11-19T02:15:59Z) - Observation of the Knot Topology of Non-Hermitian Systems in a Single
Spin [12.88459291396421]
The non-Hermiticity of the system gives rise to distinct knot topology that has no Hermitian counterpart.
Our method paves the way for further exploration of the interplay among band braiding, eigenstate topology and symmetries in non-Hermitian quantum systems.
arXiv Detail & Related papers (2023-11-07T01:22:22Z) - Topological phases of many-body non-Hermitian systems [0.0]
Many-body fermionic non-Hermitian systems require two sets of topological invariants to describe the topology of energy bands and quantum states respectively.
We identify 10 symmetry classes -- determined by particle-hole, linearized time-reversal, and linearized chiral symmetries.
arXiv Detail & Related papers (2023-11-06T11:39:20Z) - Breaking and resurgence of symmetry in the non-Hermitian Su-Schrieffer-Heeger model in photonic waveguides [0.0]
In symmetry-protected topological systems, symmetries are responsible for protecting surface states.
By engineering losses that break the symmetry protecting a topological Hermitian phase, we show that a new genuinely non-Hermitian symmetry emerges.
We classify the systems in terms of the (non-Hermitian) symmetries that are present and calculate the corresponding topological invariants.
arXiv Detail & Related papers (2023-04-12T10:05:02Z) - Non-Hermitian Topology and Exceptional-Point Geometries [15.538614667230366]
Non-Hermitian theory is a theoretical framework that excels at describing open systems.
Non-Hermitian framework consists of mathematical structures that are fundamentally different from those of Hermitian theories.
arXiv Detail & Related papers (2022-04-19T12:41:31Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.