論文の概要: M-Prometheus: A Suite of Open Multilingual LLM Judges
- arxiv url: http://arxiv.org/abs/2504.04953v1
- Date: Mon, 07 Apr 2025 11:37:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:14:57.990267
- Title: M-Prometheus: A Suite of Open Multilingual LLM Judges
- Title(参考訳): M-Prometheus: オープン多言語LLM審査員のスイート
- Authors: José Pombal, Dongkeun Yoon, Patrick Fernandes, Ian Wu, Seungone Kim, Ricardo Rei, Graham Neubig, André F. T. Martins,
- Abstract要約: M-Prometheusは,多言語出力の直接評価とペア比較フィードバックを両立できるオープンウェイトLLM判定器のスイートである。
M-Prometheusモデルは、20以上の言語にまたがる多言語報酬ベンチマークや、4つの言語対をカバーする文語機械翻訳(MT)評価において、最先端のLLM判事より優れている。
- 参考スコア(独自算出の注目度): 64.22940792713713
- License:
- Abstract: The use of language models for automatically evaluating long-form text (LLM-as-a-judge) is becoming increasingly common, yet most LLM judges are optimized exclusively for English, with strategies for enhancing their multilingual evaluation capabilities remaining largely unexplored in the current literature. This has created a disparity in the quality of automatic evaluation methods for non-English languages, ultimately hindering the development of models with better multilingual capabilities. To bridge this gap, we introduce M-Prometheus, a suite of open-weight LLM judges ranging from 3B to 14B parameters that can provide both direct assessment and pairwise comparison feedback on multilingual outputs. M-Prometheus models outperform state-of-the-art open LLM judges on multilingual reward benchmarks spanning more than 20 languages, as well as on literary machine translation (MT) evaluation covering 4 language pairs. Furthermore, M-Prometheus models can be leveraged at decoding time to significantly improve generated outputs across all 3 tested languages, showcasing their utility for the development of better multilingual models. Lastly, through extensive ablations, we identify the key factors for obtaining an effective multilingual judge, including backbone model selection and training on natively multilingual feedback data instead of translated data. We release our models, training dataset, and code.
- Abstract(参考訳): 長文テキスト(LLM-as-a-judge)の自動評価のための言語モデルの利用はますます一般的になっているが、ほとんどのLLM審査員は英語専用に最適化されている。
これにより、非英語言語の自動評価手法の品質の格差が生じ、最終的にはより優れた多言語機能を持つモデルの開発を妨げることになる。
このギャップを埋めるために、我々はM-Prometheusを紹介します。これは、3Bから14Bパラメータの範囲で、多言語出力に対する直接評価とペア比較のフィードバックを提供する、オープンウェイトLLMの判定スイートです。
M-Prometheusモデルは、20以上の言語にまたがる多言語報酬ベンチマークや、4つの言語対をカバーする文語機械翻訳(MT)評価において、最先端のLLM判事より優れている。
さらに、M-Prometheusモデルは復号時に利用でき、3つのテスト言語で生成された出力を大幅に改善することができる。
最後に, 翻訳データに代えて, バックボーンモデルの選択や, ネイティブな多言語フィードバックデータに対するトレーニングを含む, 効果的な多言語判断を行うための重要な要素を明らかにする。
モデル、トレーニングデータセット、コードをリリースしています。
関連論文リスト
- Multilingual Machine Translation with Open Large Language Models at Practical Scale: An Empirical Study [13.409987421121405]
GemmaX2-28は、28言語で最上位の多言語翻訳性能を達成する9Bモデルである。
GemmaX2-28 は TowerInstruct や XALMA などの最先端 (SOTA) モデルより一貫して優れている。
論文 参考訳(メタデータ) (2025-02-04T16:57:03Z) - X-ALMA: Plug & Play Modules and Adaptive Rejection for Quality Translation at Scale [25.257770733168012]
大規模言語モデル(LLM)は、英語中心の事前学習と限定的な多言語データにより、様々なNLPタスクにおいて顕著な成功を収めている。
X-ALMA**は、50の多様な言語で最高のパフォーマンスを保証するために設計されたモデルです。
論文 参考訳(メタデータ) (2024-10-04T03:17:27Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間の対応する概念、すなわち言語を横断的に関連付けることができるだろうか?
本研究は,言語横断的タスクにおける最先端LLMの評価である。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
大きな言語モデル(LLM)は印象的な言語機能を示している。
本研究では,LLMの自然多言語アライメント改善について検討する。
質問翻訳データ(すなわち注釈付き回答なし)に基づいて学習したLLMは、英語と幅広い言語との整合を促進できることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:46:19Z) - YAYI 2: Multilingual Open-Source Large Language Models [53.92832054643197]
我々は,300億のパラメータを持つベースモデルとチャットモデルを含むYAYI 2を提案する。
YAYI 2は、トレーニング済みのデータ処理パイプラインによってフィルタされた2.65兆のトークンを含む多言語コーパス上で、スクラッチから事前トレーニングされる。
ベースモデルは、数百万の指示による教師付き微調整と、人間のフィードバックからの強化学習によって、人間の価値と整合する。
論文 参考訳(メタデータ) (2023-12-22T17:34:47Z) - MEGAVERSE: Benchmarking Large Language Models Across Languages, Modalities, Models and Tasks [12.665447518524187]
本研究の目的は、同一の多言語データセットで比較することで、SoTA LLMの非英語能力の徹底的な評価を行うことである。
私たちのベンチマークは、低リソースのアフリカ言語を含む83の言語をカバーする22のデータセットで構成されています。
また、データ汚染に関する研究を行い、複数のモデルが多言語評価ベンチマークで汚染される可能性が示唆された。
論文 参考訳(メタデータ) (2023-11-13T16:45:37Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
我々は6400億(B)トークンでトレーニングされた多言語大言語モデル(LLM)であるPolyLMについて述べる。
その多言語的能力を高めるために,1) バイリンガルデータをトレーニングデータに統合し,2) 事前学習中に英語以外のデータの比率を30%から60%に引き上げるカリキュラム学習戦略を採用する。
さらに,モデル微調整のために,132.7Kの多言語命令を自動的に生成する多言語自己指示手法を提案する。
論文 参考訳(メタデータ) (2023-07-12T09:00:37Z) - Generalizing Multimodal Pre-training into Multilingual via Language
Acquisition [54.69707237195554]
英語のVision-Language Pre-Trainingは、様々な下流タスクで大きな成功を収めた。
この成功を英語以外の言語に一般化するために、Multilingual Vision-Language Pre-Trainingを通じていくつかの取り組みがなされている。
単言語視覚言語事前学習モデルを多言語に容易に一般化できるtextbfMultitextbfLingual textbfAcquisition (MLA) フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-29T08:53:22Z) - Probing Multilingual Language Models for Discourse [0.0]
XLM-RoBERTaファミリーのモデルが常に最高のパフォーマンスを示していることが分かりました。
また, モデル蒸留は, 文表現の言語間移動能力に悪影響を及ぼす可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-09T06:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。