論文の概要: A Domain-Based Taxonomy of Jailbreak Vulnerabilities in Large Language Models
- arxiv url: http://arxiv.org/abs/2504.04976v1
- Date: Mon, 07 Apr 2025 12:05:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:12:34.064545
- Title: A Domain-Based Taxonomy of Jailbreak Vulnerabilities in Large Language Models
- Title(参考訳): 大規模言語モデルにおけるジェイルブレイク脆弱性のドメインベース分類法
- Authors: Carlos Peláez-González, Andrés Herrera-Poyatos, Cristina Zuheros, David Herrera-Poyatos, Virilo Tejedor, Francisco Herrera,
- Abstract要約: この研究は特に、jailbreakの脆弱性の課題に焦点を当てている。
大規模な言語モデルの訓練領域に根ざした新しいジェイルブレイク攻撃の分類を導入している。
- 参考スコア(独自算出の注目度): 6.946931840176725
- License:
- Abstract: The study of large language models (LLMs) is a key area in open-world machine learning. Although LLMs demonstrate remarkable natural language processing capabilities, they also face several challenges, including consistency issues, hallucinations, and jailbreak vulnerabilities. Jailbreaking refers to the crafting of prompts that bypass alignment safeguards, leading to unsafe outputs that compromise the integrity of LLMs. This work specifically focuses on the challenge of jailbreak vulnerabilities and introduces a novel taxonomy of jailbreak attacks grounded in the training domains of LLMs. It characterizes alignment failures through generalization, objectives, and robustness gaps. Our primary contribution is a perspective on jailbreak, framed through the different linguistic domains that emerge during LLM training and alignment. This viewpoint highlights the limitations of existing approaches and enables us to classify jailbreak attacks on the basis of the underlying model deficiencies they exploit. Unlike conventional classifications that categorize attacks based on prompt construction methods (e.g., prompt templating), our approach provides a deeper understanding of LLM behavior. We introduce a taxonomy with four categories -- mismatched generalization, competing objectives, adversarial robustness, and mixed attacks -- offering insights into the fundamental nature of jailbreak vulnerabilities. Finally, we present key lessons derived from this taxonomic study.
- Abstract(参考訳): 大規模言語モデル(LLM)の研究は、オープンワールド機械学習において重要な分野である。
LLMは素晴らしい自然言語処理能力を示しているが、一貫性の問題、幻覚、ジェイルブレイクの脆弱性など、いくつかの課題に直面している。
ジェイルブレーキング(Jailbreaking)は、アライメントセーフガードを回避し、LLMの完全性を損なう安全でない出力をもたらすプロンプトの製作を指す。
この研究は、特にジェイルブレイクの脆弱性の課題に焦点を当て、LDMのトレーニングドメインに根ざした、新しいジェイルブレイク攻撃の分類を導入している。
一般化、目的、堅牢性ギャップを通じてアライメント障害を特徴づける。
私たちの主な貢献は、LLMトレーニングとアライメントの間に出現する異なる言語領域を網羅したジェイルブレイクの視点です。
この視点は、既存のアプローチの限界を強調し、それらが利用する基盤となるモデル欠陥に基づいて、ジェイルブレイク攻撃を分類することを可能にする。
素早い構成法(例えば、素早いテンプレート化)に基づいて攻撃を分類する従来の分類とは異なり、本手法はLLMの振る舞いをより深く理解する。
不正な一般化、競合する目標、敵対的堅牢性、混合攻撃の4つのカテゴリからなる分類を導入し、ジェイルブレイクの脆弱性の根本的な性質に関する洞察を提供する。
最後に,この分類学研究から得られた重要な教訓を紹介する。
関連論文リスト
- xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
ブラックボックス・ジェイルブレイク(Black-box jailbreak)は、大規模な言語モデルの安全メカニズムをバイパスする攻撃である。
強化学習(RL)を利用した新しいブラックボックスジェイルブレイク手法を提案する。
我々は,より厳密で総合的なジェイルブレイク成功評価を提供するために,キーワード,意図マッチング,回答バリデーションを取り入れた総合的ジェイルブレイク評価フレームワークを導入する。
論文 参考訳(メタデータ) (2025-01-28T06:07:58Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
私たちは、jailbreak攻撃から防御するために設計された方法であるLayer-AdvPatcherを紹介します。
私たちは、自己拡張データセットを通じて、大規模言語モデル内の特定のレイヤにパッチを適用するために、未学習の戦略を使用します。
我々の枠組みは、脱獄攻撃の有害性と攻撃の成功率を減らす。
論文 参考訳(メタデータ) (2025-01-05T19:06:03Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
大きな言語モデル(LLM)は、安全クリティカルなアプリケーションにますますデプロイされている。
LLMは、悪質なプロンプトを慎重に作り、ポリシーに違反するコンテンツを生成することで、まだジェイルブレイクされる可能性がある。
本稿では,プロンプトレベルのジェイルブレイクを用いて有害な命令を隠蔽し,グラデーションベースの攻撃で攻撃成功率を高め,テンプレートベースのコネクタを介して2種類のジェイルブレイク攻撃を接続する新しいEnJa攻撃を提案する。
論文 参考訳(メタデータ) (2024-08-07T07:46:08Z) - Jailbreak Attacks and Defenses Against Large Language Models: A Survey [22.392989536664288]
大規模言語モデル(LLM)は、様々なテキスト生成タスクにおいて例外的に機能している。
ジェイルブレイク」は、利用方針や社会に対する悪意ある反応をモデルに誘導する。
本稿では,ジェイルブレイク攻撃と防衛方法の包括的かつ詳細な分類法を提案する。
論文 参考訳(メタデータ) (2024-07-05T06:57:30Z) - Virtual Context: Enhancing Jailbreak Attacks with Special Token Injection [54.05862550647966]
本稿では、以前LLMセキュリティで見過ごされていた特別なトークンを活用して、ジェイルブレイク攻撃を改善する仮想コンテキストを提案する。
総合的な評価によると、仮想コンテキストによるジェイルブレイク攻撃は、4つの広く使われているジェイルブレイク手法の成功率を約40%向上させることができる。
論文 参考訳(メタデータ) (2024-06-28T11:35:54Z) - Jailbreaking Large Language Models Through Alignment Vulnerabilities in Out-of-Distribution Settings [57.136748215262884]
本稿では,ObscurePrompt for jailbreaking LLMを紹介し,OOD(Out-of-Distribution)データにおける脆弱なアライメントに着想を得た。
まず、脱獄過程における決定境界を定式化し、次にLLMの倫理的決定境界に不明瞭な文章がどう影響するかを考察する。
本手法は,2つの防御機構に対する有効性を保ちながら,攻撃効果の観点から従来の手法を大幅に改善する。
論文 参考訳(メタデータ) (2024-06-19T16:09:58Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
textbfAdaptive textbfShield Promptingを提案する。これは、MLLMを構造ベースのジェイルブレイク攻撃から守るための防御プロンプトで入力をプリペイドする。
我々の手法は、構造に基づくジェイルブレイク攻撃に対するMLLMの堅牢性を一貫して改善することができる。
論文 参考訳(メタデータ) (2024-03-14T15:57:13Z) - Analyzing the Inherent Response Tendency of LLMs: Real-World
Instructions-Driven Jailbreak [26.741029482196534]
大規模言語モデル(LLM)が悪意ある指示に直面すると有害な応答を発生させる現象である。
本稿では,LDMのポテンシャルを増幅することでセキュリティ機構をバイパスし,肯定応答を生成する新しい自動ジェイルブレイク手法RADIALを提案する。
提案手法は,5つのオープンソースのLLMを用いて,英語の悪意のある命令に対する攻撃性能を良好に向上すると同時に,中国語の悪意のある命令に対するクロス言語攻撃の実行において,堅牢な攻撃性能を維持する。
論文 参考訳(メタデータ) (2023-12-07T08:29:58Z) - Jailbreaking Black Box Large Language Models in Twenty Queries [97.29563503097995]
大規模言語モデル(LLM)は、敵のジェイルブレイクに対して脆弱である。
LLMへのブラックボックスアクセスのみのセマンティックジェイルブレイクを生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-12T15:38:28Z) - FuzzLLM: A Novel and Universal Fuzzing Framework for Proactively Discovering Jailbreak Vulnerabilities in Large Language Models [11.517609196300217]
FuzzLLMは,大規模言語モデル(LLM)におけるジェイルブレイク脆弱性を積極的にテストし,発見するために設計された,自動ファジリングフレームワークである。
テンプレートを使用してプロンプトの構造的整合性をキャプチャし、制約としてJailbreakクラスの重要な特徴を分離します。
異なるベースクラスを強力なコンボ攻撃に統合し、制約や禁止された質問の要素を変更することで、FazLLMは手作業の少ない効率的なテストを可能にする。
論文 参考訳(メタデータ) (2023-09-11T07:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。