論文の概要: Mixture-of-Personas Language Models for Population Simulation
- arxiv url: http://arxiv.org/abs/2504.05019v1
- Date: Mon, 07 Apr 2025 12:43:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:14:45.466813
- Title: Mixture-of-Personas Language Models for Population Simulation
- Title(参考訳): 個体群シミュレーションのための混合ペルソナ言語モデル
- Authors: Ngoc Bui, Hieu Trung Nguyen, Shantanu Kumar, Julian Theodore, Weikang Qiu, Viet Anh Nguyen, Rex Ying,
- Abstract要約: 大規模言語モデル(LLM)は、社会科学研究や機械学習モデルトレーニングにおいて、人為的なデータを増やすことができる。
MoPは文脈混合モデルであり、各コンポーネントは、ペルソナとサブポピュレーションの振る舞いを表す例によって特徴づけられるLMエージェントである。
MoPは柔軟性があり、モデル微調整を必要とせず、ベースモデル間で転送可能である。
- 参考スコア(独自算出の注目度): 20.644911871150136
- License:
- Abstract: Advances in Large Language Models (LLMs) paved the way for their emerging applications in various domains, such as human behavior simulations, where LLMs could augment human-generated data in social science research and machine learning model training. However, pretrained LLMs often fail to capture the behavioral diversity of target populations due to the inherent variability across individuals and groups. To address this, we propose \textit{Mixture of Personas} (MoP), a \textit{probabilistic} prompting method that aligns the LLM responses with the target population. MoP is a contextual mixture model, where each component is an LM agent characterized by a persona and an exemplar representing subpopulation behaviors. The persona and exemplar are randomly chosen according to the learned mixing weights to elicit diverse LLM responses during simulation. MoP is flexible, requires no model finetuning, and is transferable across base models. Experiments for synthetic data generation show that MoP outperforms competing methods in alignment and diversity metrics.
- Abstract(参考訳): 大規模言語モデル(LLMs)の進歩は、LLMが社会科学研究や機械学習モデルトレーニングにおいて人為的なデータを増やすことのできる、人間の行動シミュレーションなど、さまざまな分野における新たな応用の道を開いた。
しかし、事前訓練されたLLMは、個人や集団に固有の多様性のため、標的個体群の行動の多様性を捉えることができないことが多い。
そこで本研究では, LLM 応答を対象個体群と整合させる <textit{Mixture of Personas} (MoP) プロンプト法を提案する。
MoPは文脈混合モデルであり、各コンポーネントは、ペルソナとサブポピュレーションの振る舞いを表す例によって特徴づけられるLMエージェントである。
擬人体と模範体は、学習された混合重量に応じてランダムに選択され、シミュレーション中に多様なLDM応答を誘発する。
MoPは柔軟性があり、モデル微調整を必要とせず、ベースモデル間で転送可能である。
合成データ生成の実験では、MoPはアライメントと多様性の指標において競合する手法よりも優れていた。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - U-aggregation: Unsupervised Aggregation of Multiple Learning Algorithms [4.871473117968554]
新人口の強化とロバスト化のための教師なしモデルアグリゲーション手法U-アグリゲーションを提案する。
既存の教師付きモデルアグリゲーションや超学習者アプローチとは異なり、U-アグリゲーションは対象人口の観測されたラベルや成果を仮定しない。
複雑な形質の遺伝的リスク予測を高めるために,U凝集を用いた実世界の応用の可能性を示す。
論文 参考訳(メタデータ) (2025-01-30T01:42:51Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
大きな言語モデル(LLM)は、日々のアプリケーションにますます組み込まれています。
個人ユーザの多様な嗜好との整合性を確保することは、重要な課題となっている。
数発のステアライメントのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-18T16:14:59Z) - Sense and Sensitivity: Evaluating the simulation of social dynamics via Large Language Models [27.313165173789233]
大規模言語モデルは、社会力学をシミュレートする古典的エージェントベースモデル(ABM)の強力な代替物として提案されている。
しかし、LLMのブラックボックスの性質から、LLMエージェントが実際に意図した意味論を実行するかどうかは不明である。
目的とする力学を近似するプロンプトを設計することは可能であるが、これらのシミュレーションの品質はプロンプトの特定の選択に非常に敏感である。
論文 参考訳(メタデータ) (2024-12-06T14:50:01Z) - GenSim: A General Social Simulation Platform with Large Language Model based Agents [111.00666003559324]
我々はtextitGenSim と呼ばれる新しい大規模言語モデル (LLM) ベースのシミュレーションプラットフォームを提案する。
我々のプラットフォームは10万のエージェントをサポートし、現実世界のコンテキストで大規模人口をシミュレートする。
我々の知る限り、GenSimは汎用的で大規模で修正可能な社会シミュレーションプラットフォームに向けた最初の一歩である。
論文 参考訳(メタデータ) (2024-10-06T05:02:23Z) - Agentic Society: Merging skeleton from real world and texture from Large Language Model [4.740886789811429]
本稿では,人口統計データと大規模言語モデルを利用して仮想人口を生成する新しい枠組みについて検討する。
本手法は,社会科学実験において,多様な人間の行動のシミュレーションに不可欠な多様性のあるペルソナを生産することを示す。
しかし, 評価結果から, 現在のLSMの能力に限界があるため, 統計的真理性の弱い兆候しか得られないことが示唆された。
論文 参考訳(メタデータ) (2024-09-02T08:28:19Z) - Do LLMs Play Dice? Exploring Probability Distribution Sampling in Large Language Models for Behavioral Simulation [73.58618024960968]
人間のシーケンシャルな意思決定過程をエミュレートするエージェントとして、大きな言語モデル(LLM)を採用する研究が増えている。
このことは、確率分布を理解するためにLLMエージェントの容量に関する好奇心を喚起する。
分析の結果, LLM エージェントは確率を理解できるが, 確率サンプリングに苦慮していることがわかった。
論文 参考訳(メタデータ) (2024-04-13T16:59:28Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - LLM-driven Imitation of Subrational Behavior : Illusion or Reality? [3.2365468114603937]
既存の作業は、複雑な推論タスクに対処し、人間のコミュニケーションを模倣する大規模言語モデルの能力を強調している。
そこで本研究では,LLMを用いて人工人体を合成し,サブリレーショナル・エージェント・ポリシーを学習する手法を提案する。
我々は,4つの単純なシナリオを通して,サブリレータリティをモデル化するフレームワークの能力について実験的に評価した。
論文 参考訳(メタデータ) (2024-02-13T19:46:39Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。