論文の概要: Agentic Society: Merging skeleton from real world and texture from Large Language Model
- arxiv url: http://arxiv.org/abs/2409.10550v1
- Date: Mon, 2 Sep 2024 08:28:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-22 21:22:31.436235
- Title: Agentic Society: Merging skeleton from real world and texture from Large Language Model
- Title(参考訳): エージェント・ソサエティ: 現実世界の骨格と大規模言語モデルによるテクスチャの融合
- Authors: Yuqi Bai, Kun Sun, Huishi Yin,
- Abstract要約: 本稿では,人口統計データと大規模言語モデルを利用して仮想人口を生成する新しい枠組みについて検討する。
本手法は,社会科学実験において,多様な人間の行動のシミュレーションに不可欠な多様性のあるペルソナを生産することを示す。
しかし, 評価結果から, 現在のLSMの能力に限界があるため, 統計的真理性の弱い兆候しか得られないことが示唆された。
- 参考スコア(独自算出の注目度): 4.740886789811429
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in large language models (LLMs) and agent technologies offer promising solutions to the simulation of social science experiments, but the availability of data of real-world population required by many of them still poses as a major challenge. This paper explores a novel framework that leverages census data and LLMs to generate virtual populations, significantly reducing resource requirements and bypassing privacy compliance issues associated with real-world data, while keeping a statistical truthfulness. Drawing on real-world census data, our approach first generates a persona that reflects demographic characteristics of the population. We then employ LLMs to enrich these personas with intricate details, using techniques akin to those in image generative models but applied to textual data. Additionally, we propose a framework for the evaluation of the feasibility of our method with respect to capability of LLMs based on personality trait tests, specifically the Big Five model, which also enhances the depth and realism of the generated personas. Through preliminary experiments and analysis, we demonstrate that our method produces personas with variability essential for simulating diverse human behaviors in social science experiments. But the evaluation result shows that only weak sign of statistical truthfulness can be produced due to limited capability of current LLMs. Insights from our study also highlight the tension within LLMs between aligning with human values and reflecting real-world complexities. Thorough and rigorous test call for further research. Our codes are released at https://github.com/baiyuqi/agentic-society.git
- Abstract(参考訳): 大規模言語モデル(LLM)やエージェント技術の最近の進歩は、社会科学実験のシミュレーションに有望な解決策を提供するが、多くの人が必要とする実世界の人口のデータが利用可能であることは、依然として大きな課題である。
本稿では,人口統計データとLCMを用いて仮想人口生成を行い,資源要件を著しく低減し,実世界のデータに関連するプライバシーコンプライアンス問題を回避し,統計的真理性を維持した新たな枠組みについて検討する。
実世界の国勢調査データに基づいて,まず人口統計特性を反映したペルソナを作成した。
次に、画像生成モデルに類似した手法を用いて、複雑な詳細でこれらのペルソナを豊かにするためにLLMを用いるが、テキストデータに適用する。
さらに,人格特性テスト,特に,生成したペルソナの深さと現実性を高めるビッグファイブモデルに基づいて,LLMの能力に対する本手法の有効性を評価するための枠組みを提案する。
予備実験と分析により,社会科学実験における多様な人間の行動のシミュレーションに不可欠な多様性を持つペルソナを創出することが実証された。
しかし, 評価結果から, 現在のLSMの能力に限界があるため, 統計的真理性の弱い兆候しか得られないことが示唆された。
我々の研究から得た洞察は、人間の価値観と現実の複雑さを反映することの間のLCM内の緊張も強調する。
厳密で厳密なテストは、さらなる研究を求めている。
私たちのコードはhttps://github.com/baiyuqi/agentic-society.gitで公開されています。
関連論文リスト
- GenSim: A General Social Simulation Platform with Large Language Model based Agents [111.00666003559324]
我々はtextitGenSim と呼ばれる新しい大規模言語モデル (LLM) ベースのシミュレーションプラットフォームを提案する。
我々のプラットフォームは10万のエージェントをサポートし、現実世界のコンテキストで大規模人口をシミュレートする。
我々の知る限り、GenSimは汎用的で大規模で修正可能な社会シミュレーションプラットフォームに向けた最初の一歩である。
論文 参考訳(メタデータ) (2024-10-06T05:02:23Z) - A Synthetic Dataset for Personal Attribute Inference [2.9373912230684565]
LLMはオンラインのテキストから個人情報を正確に推測する能力だ。
個人属性を手動でラベル付けした7800以上のコメントからなる多様な合成データセットであるSynthPAIを生成する。
我々のデータセットを人間による研究で検証し、人間が実際のコメントを区別するタスクにおいて、ランダムな推測をわずかに上回っていることを示す。
論文 参考訳(メタデータ) (2024-06-11T12:50:53Z) - From Persona to Personalization: A Survey on Role-Playing Language Agents [52.783043059715546]
大規模言語モデル(LLM)の最近の進歩はロールプレイング言語エージェント(RPLA)の台頭を後押ししている。
RPLAは、人間の類似性と鮮明なロールプレイングパフォーマンスの素晴らしい感覚を達成します。
彼らは感情的な仲間、インタラクティブなビデオゲーム、パーソナライズされたアシスタント、コピロなど、多くのAI応用を触媒してきた。
論文 参考訳(メタデータ) (2024-04-28T15:56:41Z) - Is this the real life? Is this just fantasy? The Misleading Success of Simulating Social Interactions With LLMs [24.613282867543244]
大規模言語モデル(LLM)はより豊かな社会シミュレーションを可能にし、様々な社会現象の研究を可能にしている。
最近の研究は、これらのシミュレーションについて、人間とAIエージェントが現実世界で関与する不完全で情報非対称な相互作用と、基本的には異なっています。
論文 参考訳(メタデータ) (2024-03-08T03:49:17Z) - BASES: Large-scale Web Search User Simulation with Large Language Model
based Agents [108.97507653131917]
BASESは、大きな言語モデル(LLM)を持つ新しいユーザーシミュレーションフレームワークである。
シミュレーションフレームワークは,大規模に独自のユーザプロファイルを生成することができ,その結果,多様な検索行動が生まれる。
WARRIORSは、中国語と英語の両方のバージョンを含む、Web検索ユーザ行動を含む、新しい大規模なデータセットである。
論文 参考訳(メタデータ) (2024-02-27T13:44:09Z) - LLM-driven Imitation of Subrational Behavior : Illusion or Reality? [3.2365468114603937]
既存の作業は、複雑な推論タスクに対処し、人間のコミュニケーションを模倣する大規模言語モデルの能力を強調している。
そこで本研究では,LLMを用いて人工人体を合成し,サブリレーショナル・エージェント・ポリシーを学習する手法を提案する。
我々は,4つの単純なシナリオを通して,サブリレータリティをモデル化するフレームワークの能力について実験的に評価した。
論文 参考訳(メタデータ) (2024-02-13T19:46:39Z) - Under the Surface: Tracking the Artifactuality of LLM-Generated Data [21.002983022237604]
この研究は、人工データの生成において、大きな言語モデル(LLM)の役割を拡大するものである。
我々の知る限りでは、多種多様な LLM 生成テキストデータを収集する最初の研究である。
人工データの人間のパフォーマンスにマッチする能力にもかかわらず、本論文は重大な隠蔽格差を明らかにした。
論文 参考訳(メタデータ) (2024-01-26T07:53:27Z) - Do LLMs exhibit human-like response biases? A case study in survey
design [66.1850490474361]
大規模言語モデル(LLM)が人間の反応バイアスをどの程度反映しているかについて検討する。
アンケート調査では, LLMが人間のような応答バイアスを示すかどうかを評価するためのデータセットとフレームワークを設計した。
9つのモデルに対する総合的な評価は、一般のオープンかつ商用のLCMは、一般的に人間のような振る舞いを反映しないことを示している。
論文 参考訳(メタデータ) (2023-11-07T15:40:43Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
広範囲なテキストコーパスで訓練されたLarge Language Models (LLM) は、幅広い自然言語処理(NLP)タスクの先導的なソリューションとして登場した。
その顕著な性能にもかかわらず、これらのモデルは、人間の指示を誤解したり、偏見のあるコンテンツを生成したり、事実的に誤った情報を生成するといった、ある種の制限を受ける傾向にある。
本調査では,これらのアライメント技術の概要について概観する。
論文 参考訳(メタデータ) (2023-07-24T17:44:58Z) - Large Language Models as Zero-Shot Human Models for Human-Robot Interaction [12.455647753787442]
大型言語モデル(LLM)は、人間とロボットの相互作用のためのゼロショット人間モデルとして機能する。
LLMは目的のモデルに匹敵する性能を達成する。
シミュレーションされた信頼に基づくテーブルクリーニングタスクのケーススタディを提案する。
論文 参考訳(メタデータ) (2023-03-06T23:16:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。