Batch Aggregation: An Approach to Enhance Text Classification with Correlated Augmented Data
- URL: http://arxiv.org/abs/2504.05020v1
- Date: Mon, 07 Apr 2025 12:46:07 GMT
- Title: Batch Aggregation: An Approach to Enhance Text Classification with Correlated Augmented Data
- Authors: Charco Hui, Yalu Wen,
- Abstract summary: We propose a novel approach called 'Batch Aggregation' (BAGG)<n>BAGG explicitly models the dependence of text inputs generated through augmentation by incorporating an additional layer that aggregates results from correlated texts.<n>We found that the increase of performance with BAGG is more obvious in domain specific data sets, with accuracy improvements of up to 10-29%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Natural language processing models often face challenges due to limited labeled data, especially in domain specific areas, e.g., clinical trials. To overcome this, text augmentation techniques are commonly used to increases sample size by transforming the original input data into artificial ones with the label preserved. However, traditional text classification methods ignores the relationship between augmented texts and treats them as independent samples which may introduce classification error. Therefore, we propose a novel approach called 'Batch Aggregation' (BAGG) which explicitly models the dependence of text inputs generated through augmentation by incorporating an additional layer that aggregates results from correlated texts. Through studying multiple benchmark data sets across different domains, we found that BAGG can improve classification accuracy. We also found that the increase of performance with BAGG is more obvious in domain specific data sets, with accuracy improvements of up to 10-29%. Through the analysis of benchmark data, the proposed method addresses limitations of traditional techniques and improves robustness in text classification tasks. Our result demonstrates that BAGG offers more robust results and outperforms traditional approaches when training data is limited.
Related papers
- READ: Reinforcement-based Adversarial Learning for Text Classification with Limited Labeled Data [7.152603583363887]
Pre-trained transformer models such as BERT have shown massive gains across many text classification tasks.<n>This paper proposes a method that encapsulates reinforcement learning-based text generation and semi-supervised adversarial learning approaches.<n>Our method READ, Reinforcement-based Adversarial learning, utilizes an unlabeled dataset to generate diverse synthetic text through reinforcement learning.
arXiv Detail & Related papers (2025-01-14T11:39:55Z) - Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
We propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance.
DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator.
Experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-20T01:34:13Z) - Pseudo-label Based Domain Adaptation for Zero-Shot Text Steganalysis [10.587545153412314]
Cross-domain stego-text analysis method (PDTS) based on pseudo-labeling and domain adaptation (unsupervised learning)
We train the model using labeled source domain data and adapt it to target domain data distribution using pseudo-labels for unlabeled target domain data through self-training.
Experimental results demonstrate that our method performs well in zero-shot text steganalysis tasks, achieving high detection accuracy even in the absence of labeled data in the target domain, and outperforms current zero-shot text steganalysis methods.
arXiv Detail & Related papers (2024-06-01T04:19:07Z) - Improving Sampling Methods for Fine-tuning SentenceBERT in Text Streams [49.3179290313959]
This study explores the efficacy of seven text sampling methods designed to selectively fine-tune language models.
We precisely assess the impact of these methods on fine-tuning the SBERT model using four different loss functions.
Our findings indicate that Softmax loss and Batch All Triplets loss are particularly effective for text stream classification.
arXiv Detail & Related papers (2024-03-18T23:41:52Z) - Data Augmentations for Improved (Large) Language Model Generalization [17.75815547057179]
We propose to use counterfactual data augmentation, guided by knowledge of the causal structure of the data, to simulate interventions on spurious features.
We show that this strategy is appropriate in prediction problems where the label is spuriously correlated with an attribute.
arXiv Detail & Related papers (2023-10-19T14:59:25Z) - Generation-driven Contrastive Self-training for Zero-shot Text Classification with Instruction-following LLM [31.25193238045053]
We introduce a novel method, namely GenCo, which leverages the strong generative power of large language models to assist in training a smaller language model.
In our method, an LLM plays an important role in the self-training loop of a smaller model in two important ways.
It helps crafting additional high-quality training pairs, by rewriting input texts conditioned on predicted labels.
arXiv Detail & Related papers (2023-04-24T07:35:38Z) - AugGPT: Leveraging ChatGPT for Text Data Augmentation [59.76140039943385]
We propose a text data augmentation approach based on ChatGPT (named AugGPT)
AugGPT rephrases each sentence in the training samples into multiple conceptually similar but semantically different samples.
Experiment results on few-shot learning text classification tasks show the superior performance of the proposed AugGPT approach.
arXiv Detail & Related papers (2023-02-25T06:58:16Z) - CORE: A Retrieve-then-Edit Framework for Counterfactual Data Generation [91.16551253297588]
COunterfactual Generation via Retrieval and Editing (CORE) is a retrieval-augmented generation framework for creating diverse counterfactual perturbations for training.
CORE first performs a dense retrieval over a task-related unlabeled text corpus using a learned bi-encoder.
CORE then incorporates these into prompts to a large language model with few-shot learning capabilities, for counterfactual editing.
arXiv Detail & Related papers (2022-10-10T17:45:38Z) - Curriculum-Based Self-Training Makes Better Few-Shot Learners for
Data-to-Text Generation [56.98033565736974]
We propose Curriculum-Based Self-Training (CBST) to leverage unlabeled data in a rearranged order determined by the difficulty of text generation.
Our method can outperform fine-tuning and task-adaptive pre-training methods, and achieve state-of-the-art performance in the few-shot setting of data-to-text generation.
arXiv Detail & Related papers (2022-06-06T16:11:58Z) - Retrieval Enhanced Data Augmentation for Question Answering on Privacy
Policies [74.01792675564218]
We develop a data augmentation framework based on ensembling retriever models that captures relevant text segments from unlabeled policy documents.
To improve the diversity and quality of the augmented data, we leverage multiple pre-trained language models (LMs) and cascade them with noise reduction filter models.
Using our augmented data on the PrivacyQA benchmark, we elevate the existing baseline by a large margin (10% F1) and achieve a new state-of-the-art F1 score of 50%.
arXiv Detail & Related papers (2022-04-19T15:45:23Z) - ALP: Data Augmentation using Lexicalized PCFGs for Few-Shot Text
Classification [11.742065170002162]
We present the data augmentation using Lexicalized Probabilistic context-free grammars (ALP)
Experiments on few-shot text classification tasks demonstrate that ALP enhances many state-of-the-art classification methods.
We argue empirically that the traditional splitting of training and validation sets is sub-optimal compared to our novel augmentation-based splitting strategies.
arXiv Detail & Related papers (2021-12-16T09:56:35Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z) - Improving unsupervised neural aspect extraction for online discussions
using out-of-domain classification [11.746330029375745]
We introduce a simple approach based on sentence filtering to improve topical aspects learned from newsgroups-based content.
The positive effect of sentence filtering on topic coherence is demonstrated in comparison to aspect extraction models trained on unfiltered texts.
arXiv Detail & Related papers (2020-06-17T10:34:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.