Attention-Augmented Inverse Reinforcement Learning with Graph Convolutions for Multi-Agent Task Allocation
- URL: http://arxiv.org/abs/2504.05045v3
- Date: Mon, 14 Apr 2025 09:42:55 GMT
- Title: Attention-Augmented Inverse Reinforcement Learning with Graph Convolutions for Multi-Agent Task Allocation
- Authors: Huilin Yin, Zhikun Yang, Linchuan Zhang, Daniel Watzenig,
- Abstract summary: Multi-agent task allocation (MATA) plays a vital role in cooperative multi-agent systems.<n>Inverse reinforcement learning (IRL)-based framework is proposed to enhance reward function learning and task execution efficiency.<n>Experiments validate the superiority of the proposed method over widely used multi-agent reinforcement learning (MARL) algorithms.
- Score: 0.29998889086656577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible. Multi-agent task allocation (MATA) plays a vital role in cooperative multi-agent systems, with significant implications for applications such as logistics, search and rescue, and robotic coordination. Although traditional deep reinforcement learning (DRL) methods have been shown to be promising, their effectiveness is hindered by a reliance on manually designed reward functions and inefficiencies in dynamic environments. In this paper, an inverse reinforcement learning (IRL)-based framework is proposed, in which multi-head self-attention (MHSA) and graph attention mechanisms are incorporated to enhance reward function learning and task execution efficiency. Expert demonstrations are utilized to infer optimal reward densities, allowing dependence on handcrafted designs to be reduced and adaptability to be improved. Extensive experiments validate the superiority of the proposed method over widely used multi-agent reinforcement learning (MARL) algorithms in terms of both cumulative rewards and task execution efficiency.
Related papers
- Self-Controlled Dynamic Expansion Model for Continual Learning [10.447232167638816]
This paper introduces an innovative Self-Controlled Dynamic Expansion Model (SCDEM)
SCDEM orchestrates multiple trainable pre-trained ViT backbones to furnish diverse and semantically enriched representations.
An extensive series of experiments have been conducted to evaluate the proposed methodology's efficacy.
arXiv Detail & Related papers (2025-04-14T15:22:51Z) - O-MAPL: Offline Multi-agent Preference Learning [5.4482836906033585]
Inferring reward functions from demonstrations is a key challenge in reinforcement learning (RL)<n>We introduce a novel end-to-end preference-based learning framework for cooperative MARL.<n>Our algorithm outperforms existing methods across various tasks.
arXiv Detail & Related papers (2025-01-31T08:08:20Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.<n>We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Guiding Multi-agent Multi-task Reinforcement Learning by a Hierarchical Framework with Logical Reward Shaping [16.5526277899717]
This study aims to design a multi-agent cooperative algorithm with logic reward shaping.
Experiments have been conducted on various types of tasks in the Minecraft-like environment.
arXiv Detail & Related papers (2024-11-02T09:03:23Z) - RILe: Reinforced Imitation Learning [60.63173816209543]
RILe is a framework that combines the strengths of imitation learning and inverse reinforcement learning to learn a dense reward function efficiently.<n>Our framework produces high-performing policies in high-dimensional tasks where direct imitation fails to replicate complex behaviors.
arXiv Detail & Related papers (2024-06-12T17:56:31Z) - Sample Efficient Myopic Exploration Through Multitask Reinforcement
Learning with Diverse Tasks [53.44714413181162]
This paper shows that when an agent is trained on a sufficiently diverse set of tasks, a generic policy-sharing algorithm with myopic exploration design can be sample-efficient.
To the best of our knowledge, this is the first theoretical demonstration of the "exploration benefits" of MTRL.
arXiv Detail & Related papers (2024-03-03T22:57:44Z) - Semantically Aligned Task Decomposition in Multi-Agent Reinforcement
Learning [56.26889258704261]
We propose a novel "disentangled" decision-making method, Semantically Aligned task decomposition in MARL (SAMA)
SAMA prompts pretrained language models with chain-of-thought that can suggest potential goals, provide suitable goal decomposition and subgoal allocation as well as self-reflection-based replanning.
SAMA demonstrates considerable advantages in sample efficiency compared to state-of-the-art ASG methods.
arXiv Detail & Related papers (2023-05-18T10:37:54Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
inverse reinforcement learning (IRL) -- inferring the reward function of an agent from observing its behavior.
This paper addresses the problem of IRL -- inferring the reward function of an agent from observing its behavior.
arXiv Detail & Related papers (2022-08-09T17:29:49Z) - Weakly Supervised Disentangled Representation for Goal-conditioned
Reinforcement Learning [15.698612710580447]
We propose a skill learning framework DR-GRL that aims to improve the sample efficiency and policy generalization.
In a weakly supervised manner, we propose a Spatial Transform AutoEncoder (STAE) to learn an interpretable and controllable representation.
We empirically demonstrate that DR-GRL significantly outperforms the previous methods in sample efficiency and policy generalization.
arXiv Detail & Related papers (2022-02-28T09:05:14Z) - Learning from Guided Play: A Scheduled Hierarchical Approach for
Improving Exploration in Adversarial Imitation Learning [7.51557557629519]
We present Learning from Guided Play (LfGP), a framework in which we leverage expert demonstrations of, in addition to a main task, multiple auxiliary tasks.
This affords many benefits: learning efficiency is improved for main tasks with challenging bottleneck transitions, expert data becomes reusable between tasks, and transfer learning through the reuse of learned auxiliary task models becomes possible.
arXiv Detail & Related papers (2021-12-16T14:58:08Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Softmax with Regularization: Better Value Estimation in Multi-Agent
Reinforcement Learning [72.28520951105207]
Overestimation in $Q$-learning is an important problem that has been extensively studied in single-agent reinforcement learning.
We propose a novel regularization-based update scheme that penalizes large joint action-values deviating from a baseline.
We show that our method provides a consistent performance improvement on a set of challenging StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2021-03-22T14:18:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.