LDGNet: A Lightweight Difference Guiding Network for Remote Sensing Change Detection
- URL: http://arxiv.org/abs/2504.05062v2
- Date: Tue, 15 Apr 2025 08:15:27 GMT
- Title: LDGNet: A Lightweight Difference Guiding Network for Remote Sensing Change Detection
- Authors: Chenfeng Xu,
- Abstract summary: We propose a Lightweight Difference Guiding Network (LDGNet) to guide optical remote sensing change detection.<n>First, to enhance the feature representation capability of the lightweight backbone network, we propose the Difference Guiding Module (DGM)<n>Second, we propose the Difference-Aware Dynamic Fusion (DADF) module with Visual State Space Model (VSSM) for lightweight long-range dependency modeling.
- Score: 6.554696547472252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid advancement of deep learning, the field of change detection (CD) in remote sensing imagery has achieved remarkable progress. Existing change detection methods primarily focus on achieving higher accuracy with increased computational costs and parameter sizes, leaving development of lightweight methods for rapid real-world processing an underexplored challenge. To address this challenge, we propose a Lightweight Difference Guiding Network (LDGNet), leveraging absolute difference image to guide optical remote sensing change detection. First, to enhance the feature representation capability of the lightweight backbone network, we propose the Difference Guiding Module (DGM), which leverages multi-scale features extracted from the absolute difference image to progressively influence the original image encoder at each layer, thereby reinforcing feature extraction. Second, we propose the Difference-Aware Dynamic Fusion (DADF) module with Visual State Space Model (VSSM) for lightweight long-range dependency modeling. The module first uses feature absolute differences to guide VSSM's global contextual modeling of change regions, then employs difference attention to dynamically fuse these long-range features with feature differences, enhancing change semantics while suppressing noise and background. Extensive experiments on multiple datasets demonstrate that our method achieves comparable or superior performance to current state-of-the-art (SOTA) methods requiring several times more computation, while maintaining only 3.43M parameters and 1.12G FLOPs.
Related papers
- Mask Approximation Net: A Novel Diffusion Model Approach for Remote Sensing Change Captioning [15.88864190284027]
This paper proposes a novel approach for remote sensing image change detection and description that incorporates diffusion models.<n>We introduce a frequency-guided complex filter module to boost the model performance by managing high-frequency noise.<n>We validate the effectiveness of our proposed method across several datasets for remote sensing change detection and description.
arXiv Detail & Related papers (2024-12-26T11:35:57Z) - Enhancing Perception of Key Changes in Remote Sensing Image Change Captioning [49.24306593078429]
We propose a novel framework for remote sensing image change captioning, guided by Key Change Features and Instruction-tuned (KCFI)
KCFI includes a ViTs encoder for extracting bi-temporal remote sensing image features, a key feature perceiver for identifying critical change areas, and a pixel-level change detection decoder.
To validate the effectiveness of our approach, we compare it against several state-of-the-art change captioning methods on the LEVIR-CC dataset.
arXiv Detail & Related papers (2024-09-19T09:33:33Z) - MonoMM: A Multi-scale Mamba-Enhanced Network for Real-time Monocular 3D Object Detection [9.780498146964097]
We propose an innovative network architecture, MonoMM, for real-time monocular 3D object detection.
MonoMM consists of Focused Multi-Scale Fusion (FMF) and Depth-Aware Feature Enhancement Mamba (DMB) modules.
Our method outperforms previous monocular methods and achieves real-time detection.
arXiv Detail & Related papers (2024-08-01T10:16:58Z) - Advanced Feature Manipulation for Enhanced Change Detection Leveraging Natural Language Models [2.2933109484655794]
Large language models (LLMs) have been utilized in various domains for their exceptional feature extraction capabilities.
In this study, we harness the power of a pre-trained LLM, extracting feature maps from extensive datasets, and employ an auxiliary network to detect changes.
arXiv Detail & Related papers (2024-03-23T22:07:32Z) - Siamese Meets Diffusion Network: SMDNet for Enhanced Change Detection in
High-Resolution RS Imagery [7.767708235606408]
We propose a new network, Siamese-U2Net Feature Differential Meets Network (SMDNet)
This network combines the Siam-U2Net Feature Differential (SU-FDE) and the denoising diffusion implicit model to improve the accuracy of image edge change detection.
Our method's combination of feature extraction and diffusion models demonstrates effectiveness in change detection in remote sensing images.
arXiv Detail & Related papers (2024-01-17T16:48:55Z) - Bi-directional Adapter for Multi-modal Tracking [67.01179868400229]
We propose a novel multi-modal visual prompt tracking model based on a universal bi-directional adapter.
We develop a simple but effective light feature adapter to transfer modality-specific information from one modality to another.
Our model achieves superior tracking performance in comparison with both the full fine-tuning methods and the prompt learning-based methods.
arXiv Detail & Related papers (2023-12-17T05:27:31Z) - TransY-Net:Learning Fully Transformer Networks for Change Detection of
Remote Sensing Images [64.63004710817239]
We propose a novel Transformer-based learning framework named TransY-Net for remote sensing image CD.
It improves the feature extraction from a global view and combines multi-level visual features in a pyramid manner.
Our proposed method achieves a new state-of-the-art performance on four optical and two SAR image CD benchmarks.
arXiv Detail & Related papers (2023-10-22T07:42:19Z) - A Dual Attentive Generative Adversarial Network for Remote Sensing Image
Change Detection [6.906936669510404]
We propose a dual attentive generative adversarial network for achieving very high-resolution remote sensing image change detection tasks.
The DAGAN framework has better performance with 85.01% mean IoU and 91.48% mean F1 score than advanced methods on the LEVIR dataset.
arXiv Detail & Related papers (2023-10-03T08:26:27Z) - Salient Object Detection in Optical Remote Sensing Images Driven by
Transformer [69.22039680783124]
We propose a novel Global Extraction Local Exploration Network (GeleNet) for Optical Remote Sensing Images (ORSI-SOD)
Specifically, GeleNet first adopts a transformer backbone to generate four-level feature embeddings with global long-range dependencies.
Extensive experiments on three public datasets demonstrate that the proposed GeleNet outperforms relevant state-of-the-art methods.
arXiv Detail & Related papers (2023-09-15T07:14:43Z) - Can SAM Boost Video Super-Resolution? [78.29033914169025]
We propose a simple yet effective module -- SAM-guidEd refinEment Module (SEEM)
This light-weight plug-in module is specifically designed to leverage the attention mechanism for the generation of semantic-aware feature.
We apply our SEEM to two representative methods, EDVR and BasicVSR, resulting in consistently improved performance with minimal implementation effort.
arXiv Detail & Related papers (2023-05-11T02:02:53Z) - A Single Stream Network for Robust and Real-time RGB-D Salient Object
Detection [89.88222217065858]
We design a single stream network to use the depth map to guide early fusion and middle fusion between RGB and depth.
This model is 55.5% lighter than the current lightest model and runs at a real-time speed of 32 FPS when processing a $384 times 384$ image.
arXiv Detail & Related papers (2020-07-14T04:40:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.