論文の概要: CARE: Assessing the Impact of Multilingual Human Preference Learning on Cultural Awareness
- arxiv url: http://arxiv.org/abs/2504.05154v3
- Date: Wed, 04 Jun 2025 05:22:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 16:24:48.961168
- Title: CARE: Assessing the Impact of Multilingual Human Preference Learning on Cultural Awareness
- Title(参考訳): CARE:多言語人の嗜好学習が文化意識に与える影響を評価する
- Authors: Geyang Guo, Tarek Naous, Hiromi Wakaki, Yukiko Nishimura, Yuki Mitsufuji, Alan Ritter, Wei Xu,
- Abstract要約: 我々は,3,490の文化的特異な質問と31.7kの回答を母国語で行う多言語リソースであるtextbfCAREを紹介した。
質の高いネイティブな嗜好の質が、様々なLMの文化意識をいかに向上させるかを示す。
分析の結果,初期の文化的パフォーマンスが向上したモデルの方がアライメントの恩恵を受けやすいことがわかった。
- 参考スコア(独自算出の注目度): 28.676469530858924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language Models (LMs) are typically tuned with human preferences to produce helpful responses, but the impact of preference tuning on the ability to handle culturally diverse queries remains understudied. In this paper, we systematically analyze how native human cultural preferences can be incorporated into the preference learning process to train more culturally aware LMs. We introduce \textbf{CARE}, a multilingual resource containing 3,490 culturally specific questions and 31.7k responses with native judgments. We demonstrate how a modest amount of high-quality native preferences improves cultural awareness across various LMs, outperforming larger generic preference data. Our analyses reveal that models with stronger initial cultural performance benefit more from alignment, leading to gaps among models developed in different regions with varying access to culturally relevant data. CARE will be made publicly available at https://github.com/Guochry/CARE.
- Abstract(参考訳): 言語モデル(LM)は通常、人間の好みを調整して有用な応答を生成するが、文化的に多様なクエリを扱う能力に対する好みのチューニングの影響はいまだ検討されていない。
本稿では,より文化的に意識されたLMを学習するための嗜好学習プロセスに,人類の文化的嗜好をどのように組み込むことができるのかを体系的に分析する。
我々は,3,490の文化的特異な質問と31.7kのネイティブ判断応答を含む多言語リソースである「textbf{CARE}」を紹介した。
質の高いネイティブな嗜好の質が、様々なLMの文化意識を向上させ、より大規模なジェネリックな嗜好データより優れていることを示す。
分析の結果,初期文化のパフォーマンスが向上したモデルはアライメントの恩恵を受けやすく,文化的に関係のあるさまざまなデータにアクセス可能な異なる地域で開発されたモデル間のギャップが生じることが明らかとなった。
CAREはhttps://github.com/Guochry/CAREで公開される。
関連論文リスト
- DaKultur: Evaluating the Cultural Awareness of Language Models for Danish with Native Speakers [17.355452637877402]
我々はデンマークのミッドリソース言語に対する最初の文化的評価研究を行い、母国語話者は異なるモデルに文化的認識を必要とする課題を解決するよう促す。
人口統計学的に多様性のある63人の1,038人のインタラクションの分析は、文化的適応に対するオープンな課題を浮き彫りにしている。
論文 参考訳(メタデータ) (2025-04-03T08:52:42Z) - Multilingual != Multicultural: Evaluating Gaps Between Multilingual Capabilities and Cultural Alignment in LLMs [2.5212698425008377]
大規模言語モデル(LLM)は、グローバル言語全体でますます能力を高めつつある。
しかし、言語間のコミュニケーション能力が必ずしも適切な文化的表現に変換されるとは限らない。
GoogleのGemmaモデルとOpenAIのターボシリーズの2つのモデルを比較します。
言語能力と文化的アライメントの間には、一貫した関係は見つからない。
論文 参考訳(メタデータ) (2025-02-23T11:02:41Z) - CVQA: Culturally-diverse Multilingual Visual Question Answering Benchmark [68.21939124278065]
言語と文化の豊富なセットをカバーするために設計された、文化的に多言語なビジュアル質問回答ベンチマーク。
CVQAには文化的に駆動されたイメージと、4大陸30カ国の質問が含まれ、31の言語と13のスクリプトをカバーし、合計10万の質問を提供する。
CVQA上で複数のマルチモーダル大言語モデル (MLLM) をベンチマークし、現在の最先端モデルではデータセットが困難であることを示す。
論文 参考訳(メタデータ) (2024-06-10T01:59:00Z) - The Echoes of Multilinguality: Tracing Cultural Value Shifts during LM Fine-tuning [23.418656688405605]
本研究では, 異なるテスト言語で符号化された文化的価値に言語がどのように影響するかを, 微調整時にどのように修正されるかを検討する。
最後に、トレーニングデータ属性法を用いて、微調整の例やそれらが生み出す言語にパターンを見つける。
論文 参考訳(メタデータ) (2024-05-21T12:55:15Z) - CULTURE-GEN: Revealing Global Cultural Perception in Language Models through Natural Language Prompting [73.94059188347582]
110か国・地域での3つのSOTAモデルの文化認識を,文化条件付き世代を通して8つの文化関連トピックについて明らかにした。
文化条件付き世代は、デフォルトの文化と区別される余分な文化を区別する言語的な「マーカー」から成り立っていることが判明した。
論文 参考訳(メタデータ) (2024-04-16T00:50:43Z) - Investigating Cultural Alignment of Large Language Models [10.738300803676655]
LLM(Large Language Models)は,異なる文化で採用されている多様な知識を真にカプセル化していることを示す。
社会学的調査をシミュレートし、実際の調査参加者のモデル応答を参考として、文化的アライメントの定量化を行う。
本稿では,人類学的推論を活用し,文化的アライメントを高める新しい手法である人類学的プロンプティングを紹介する。
論文 参考訳(メタデータ) (2024-02-20T18:47:28Z) - Massively Multi-Cultural Knowledge Acquisition & LM Benchmarking [48.21982147529661]
本稿では,多文化知識獲得のための新しいアプローチを提案する。
本手法は,文化トピックに関するウィキペディア文書からリンクページの広範囲なネットワークへ戦略的にナビゲートする。
私たちの仕事は、AIにおける文化的格差のギャップを深く理解し、橋渡しするための重要なステップです。
論文 参考訳(メタデータ) (2024-02-14T18:16:54Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
本稿では,大規模言語モデル(LLM)における文化的優位性について述べる。
LLMは、ユーザーが非英語で尋ねるときに期待する文化とは無関係な、不適切な英語文化関連の回答を提供することが多い。
論文 参考訳(メタデータ) (2023-10-19T05:38:23Z) - NusaWrites: Constructing High-Quality Corpora for Underrepresented and
Extremely Low-Resource Languages [54.808217147579036]
インドネシアの地方言語について事例研究を行う。
データセット構築におけるオンラインスクラップ,人文翻訳,および母語話者による段落作成の有効性を比較した。
本研究は,母語話者による段落作成によって生成されたデータセットが,語彙的多様性と文化的内容の点で優れた品質を示すことを示す。
論文 参考訳(メタデータ) (2023-09-19T14:42:33Z) - Multi-lingual and Multi-cultural Figurative Language Understanding [69.47641938200817]
図形言語は人間のコミュニケーションに浸透するが、NLPでは比較的過小評価されている。
Hindi, Indonesian, Javanese, Kannada, Sundanese, Swahili, Yorubaの7つの多様な言語に関するデータセットを作成しました。
我々のデータセットから,各言語は,同じ領域から派生した言語間で最も高い重なり合いを持つ,図形表現の文化的・地域的概念に依存していることが明らかとなった。
全ての言語は、事前学習データと微調整データの可用性を反映した性能の変化により、英語と比較して大きな欠陥がある。
論文 参考訳(メタデータ) (2023-05-25T15:30:31Z) - Having Beer after Prayer? Measuring Cultural Bias in Large Language Models [25.722262209465846]
多言語およびアラビア語のモノリンガルLMは、西洋文化に関連する実体に対して偏見を示すことを示す。
アラブ文化と西洋文化を対比する8つのタイプにまたがる628個の自然発生プロンプトと20,368個のエンティティからなる新しい資源であるCAMeLを紹介した。
CAMeLを用いて、物語生成、NER、感情分析などのタスクにおいて、16の異なるLMのアラビア語における異文化間性能について検討した。
論文 参考訳(メタデータ) (2023-05-23T18:27:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。