CARE: Assessing the Impact of Multilingual Human Preference Learning on Cultural Awareness
- URL: http://arxiv.org/abs/2504.05154v4
- Date: Wed, 18 Jun 2025 23:44:50 GMT
- Title: CARE: Assessing the Impact of Multilingual Human Preference Learning on Cultural Awareness
- Authors: Geyang Guo, Tarek Naous, Hiromi Wakaki, Yukiko Nishimura, Yuki Mitsufuji, Alan Ritter, Wei Xu,
- Abstract summary: We introduce CARE, a multilingual resource containing 3,490 culturally specific questions and 31.7k responses with native judgments.<n>We demonstrate how a modest amount of high-quality native preferences improves cultural awareness across various LMs.<n>Our analyses reveal that models with stronger initial cultural performance benefit more from alignment.
- Score: 28.676469530858924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language Models (LMs) are typically tuned with human preferences to produce helpful responses, but the impact of preference tuning on the ability to handle culturally diverse queries remains understudied. In this paper, we systematically analyze how native human cultural preferences can be incorporated into the preference learning process to train more culturally aware LMs. We introduce CARE, a multilingual resource containing 3,490 culturally specific questions and 31.7k responses with native judgments. We demonstrate how a modest amount of high-quality native preferences improves cultural awareness across various LMs, outperforming larger generic preference data. Our analyses reveal that models with stronger initial cultural performance benefit more from alignment, leading to gaps among models developed in different regions with varying access to culturally relevant data. CARE will be made publicly available at https://github.com/Guochry/CARE.
Related papers
- CulFiT: A Fine-grained Cultural-aware LLM Training Paradigm via Multilingual Critique Data Synthesis [41.261808170896686]
CulFiT is a novel training paradigm that leverages multilingual data and fine-grained reward modeling to enhance cultural sensitivity and inclusivity.<n>Our approach synthesizes diverse cultural-related questions, constructs critique data in culturally relevant languages, and employs fine-grained rewards to decompose cultural texts into verifiable knowledge units.
arXiv Detail & Related papers (2025-05-26T04:08:26Z) - CAReDiO: Cultural Alignment of LLM via Representativeness and Distinctiveness Guided Data Optimization [50.90288681622152]
Large Language Models (LLMs) more deeply integrate into human life across various regions.<n>Existing approaches develop culturally aligned LLMs through fine-tuning with culture-specific corpora.<n>We introduce CAReDiO, a novel cultural data construction framework.
arXiv Detail & Related papers (2025-04-09T13:40:13Z) - DaKultur: Evaluating the Cultural Awareness of Language Models for Danish with Native Speakers [17.355452637877402]
We conduct the first cultural evaluation study for the mid-resource language of Danish, in which native speakers prompt different models to solve tasks requiring cultural awareness.<n>Our analysis of the resulting 1,038 interactions from 63 demographically diverse participants highlights open challenges to cultural adaptation.
arXiv Detail & Related papers (2025-04-03T08:52:42Z) - Multilingual != Multicultural: Evaluating Gaps Between Multilingual Capabilities and Cultural Alignment in LLMs [2.5212698425008377]
Large Language Models (LLMs) are becoming increasingly capable across global languages.<n>However, the ability to communicate across languages does not necessarily translate to appropriate cultural representations.<n>We compare two families of models: Google's Gemma models and OpenAI's turbo-series.<n>We find no consistent relationships between language capabilities and cultural alignment.
arXiv Detail & Related papers (2025-02-23T11:02:41Z) - CultureVLM: Characterizing and Improving Cultural Understanding of Vision-Language Models for over 100 Countries [63.00147630084146]
Vision-language models (VLMs) have advanced human-AI interaction but struggle with cultural understanding.<n>CultureVerse is a large-scale multimodal benchmark covering 19, 682 cultural concepts, 188 countries/regions, 15 cultural concepts, and 3 question types.<n>We propose CultureVLM, a series of VLMs fine-tuned on our dataset to achieve significant performance improvement in cultural understanding.
arXiv Detail & Related papers (2025-01-02T14:42:37Z) - Self-Alignment: Improving Alignment of Cultural Values in LLMs via In-Context Learning [13.034603322224548]
We present a simple and inexpensive method that uses a combination of in-context learning (ICL) and human survey data.
We show that our method could prove useful in test languages other than English and can improve alignment to the cultural values that correspond to a range of culturally diverse countries.
arXiv Detail & Related papers (2024-08-29T12:18:04Z) - Extrinsic Evaluation of Cultural Competence in Large Language Models [53.626808086522985]
We focus on extrinsic evaluation of cultural competence in two text generation tasks.
We evaluate model outputs when an explicit cue of culture, specifically nationality, is perturbed in the prompts.
We find weak correlations between text similarity of outputs for different countries and the cultural values of these countries.
arXiv Detail & Related papers (2024-06-17T14:03:27Z) - CVQA: Culturally-diverse Multilingual Visual Question Answering Benchmark [68.21939124278065]
Culturally-diverse multilingual Visual Question Answering benchmark designed to cover a rich set of languages and cultures.
CVQA includes culturally-driven images and questions from across 30 countries on four continents, covering 31 languages with 13 scripts, providing a total of 10k questions.
We benchmark several Multimodal Large Language Models (MLLMs) on CVQA, and show that the dataset is challenging for the current state-of-the-art models.
arXiv Detail & Related papers (2024-06-10T01:59:00Z) - CulturePark: Boosting Cross-cultural Understanding in Large Language Models [63.452948673344395]
This paper introduces CulturePark, an LLM-powered multi-agent communication framework for cultural data collection.
It generates high-quality cross-cultural dialogues encapsulating human beliefs, norms, and customs.
We evaluate these models across three downstream tasks: content moderation, cultural alignment, and cultural education.
arXiv Detail & Related papers (2024-05-24T01:49:02Z) - The Echoes of Multilinguality: Tracing Cultural Value Shifts during LM Fine-tuning [23.418656688405605]
We study how languages can exert influence on the cultural values encoded for different test languages, by studying how such values are revised during fine-tuning.
Lastly, we use a training data attribution method to find patterns in the fine-tuning examples, and the languages that they come from, that tend to instigate value shifts.
arXiv Detail & Related papers (2024-05-21T12:55:15Z) - CULTURE-GEN: Revealing Global Cultural Perception in Language Models through Natural Language Prompting [73.94059188347582]
We uncover culture perceptions of three SOTA models on 110 countries and regions on 8 culture-related topics through culture-conditioned generations.
We discover that culture-conditioned generation consist of linguistic "markers" that distinguish marginalized cultures apart from default cultures.
arXiv Detail & Related papers (2024-04-16T00:50:43Z) - Investigating Cultural Alignment of Large Language Models [10.738300803676655]
We show that Large Language Models (LLMs) genuinely encapsulate the diverse knowledge adopted by different cultures.
We quantify cultural alignment by simulating sociological surveys, comparing model responses to those of actual survey participants as references.
We introduce Anthropological Prompting, a novel method leveraging anthropological reasoning to enhance cultural alignment.
arXiv Detail & Related papers (2024-02-20T18:47:28Z) - Massively Multi-Cultural Knowledge Acquisition & LM Benchmarking [48.21982147529661]
This paper introduces a novel approach for massively multicultural knowledge acquisition.
Our method strategically navigates from densely informative Wikipedia documents on cultural topics to an extensive network of linked pages.
Our work marks an important step towards deeper understanding and bridging the gaps of cultural disparities in AI.
arXiv Detail & Related papers (2024-02-14T18:16:54Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
This paper identifies a cultural dominance issue within large language models (LLMs)
LLMs often provide inappropriate English-culture-related answers that are not relevant to the expected culture when users ask in non-English languages.
arXiv Detail & Related papers (2023-10-19T05:38:23Z) - NusaWrites: Constructing High-Quality Corpora for Underrepresented and
Extremely Low-Resource Languages [54.808217147579036]
We conduct a case study on Indonesian local languages.
We compare the effectiveness of online scraping, human translation, and paragraph writing by native speakers in constructing datasets.
Our findings demonstrate that datasets generated through paragraph writing by native speakers exhibit superior quality in terms of lexical diversity and cultural content.
arXiv Detail & Related papers (2023-09-19T14:42:33Z) - Multi-lingual and Multi-cultural Figurative Language Understanding [69.47641938200817]
Figurative language permeates human communication, but is relatively understudied in NLP.
We create a dataset for seven diverse languages associated with a variety of cultures: Hindi, Indonesian, Javanese, Kannada, Sundanese, Swahili and Yoruba.
Our dataset reveals that each language relies on cultural and regional concepts for figurative expressions, with the highest overlap between languages originating from the same region.
All languages exhibit a significant deficiency compared to English, with variations in performance reflecting the availability of pre-training and fine-tuning data.
arXiv Detail & Related papers (2023-05-25T15:30:31Z) - Having Beer after Prayer? Measuring Cultural Bias in Large Language Models [25.722262209465846]
We show that multilingual and Arabic monolingual LMs exhibit bias towards entities associated with Western culture.
We introduce CAMeL, a novel resource of 628 naturally-occurring prompts and 20,368 entities spanning eight types that contrast Arab and Western cultures.
Using CAMeL, we examine the cross-cultural performance in Arabic of 16 different LMs on tasks such as story generation, NER, and sentiment analysis.
arXiv Detail & Related papers (2023-05-23T18:27:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.