SSLFusion: Scale & Space Aligned Latent Fusion Model for Multimodal 3D Object Detection
- URL: http://arxiv.org/abs/2504.05170v1
- Date: Mon, 07 Apr 2025 15:15:06 GMT
- Title: SSLFusion: Scale & Space Aligned Latent Fusion Model for Multimodal 3D Object Detection
- Authors: Bonan Ding, Jin Xie, Jing Nie, Jiale Cao,
- Abstract summary: Multimodal 3D object detection based on deep neural networks has indeed made significant progress.<n>However, it still faces challenges due to the misalignment of scale and spatial information between features extracted from 2D images and those derived from 3D point clouds.<n>We present SSLFusion, a novel scale & Space Aligned Latent Fusion Model, consisting of a scale-aligned fusion strategy, a 3D-to-2D space alignment module, and a latent cross-modal fusion module.
- Score: 24.367371441506116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal 3D object detection based on deep neural networks has indeed made significant progress. However, it still faces challenges due to the misalignment of scale and spatial information between features extracted from 2D images and those derived from 3D point clouds. Existing methods usually aggregate multimodal features at a single stage. However, leveraging multi-stage cross-modal features is crucial for detecting objects of various scales. Therefore, these methods often struggle to integrate features across different scales and modalities effectively, thereby restricting the accuracy of detection. Additionally, the time-consuming Query-Key-Value-based (QKV-based) cross-attention operations often utilized in existing methods aid in reasoning the location and existence of objects by capturing non-local contexts. However, this approach tends to increase computational complexity. To address these challenges, we present SSLFusion, a novel Scale & Space Aligned Latent Fusion Model, consisting of a scale-aligned fusion strategy (SAF), a 3D-to-2D space alignment module (SAM), and a latent cross-modal fusion module (LFM). SAF mitigates scale misalignment between modalities by aggregating features from both images and point clouds across multiple levels. SAM is designed to reduce the inter-modal gap between features from images and point clouds by incorporating 3D coordinate information into 2D image features. Additionally, LFM captures cross-modal non-local contexts in the latent space without utilizing the QKV-based attention operations, thus mitigating computational complexity. Experiments on the KITTI and DENSE datasets demonstrate that our SSLFusion outperforms state-of-the-art methods. Our approach obtains an absolute gain of 2.15% in 3D AP, compared with the state-of-art method GraphAlign on the moderate level of the KITTI test set.
Related papers
- Cross-Modal and Uncertainty-Aware Agglomeration for Open-Vocabulary 3D Scene Understanding [58.38294408121273]
We propose Cross-modal and Uncertainty-aware Agglomeration for Open-vocabulary 3D Scene Understanding dubbed CUA-O3D.<n>Our method addresses two key challenges: (1) incorporating semantic priors from VLMs alongside the geometric knowledge of spatially-aware vision foundation models, and (2) using a novel deterministic uncertainty estimation to capture model-specific uncertainties.
arXiv Detail & Related papers (2025-03-20T20:58:48Z) - Efficient Multimodal 3D Object Detector via Instance-Level Contrastive Distillation [17.634678949648208]
We introduce a fast yet effective multimodal 3D object detector, incorporating our proposed Instance-level Contrastive Distillation (ICD) framework and Cross Linear Attention Fusion Module (CLFM)<n>Our 3D object detector outperforms state-of-the-art (SOTA) methods while achieving superior efficiency.
arXiv Detail & Related papers (2025-03-17T08:26:11Z) - Efficient Feature Aggregation and Scale-Aware Regression for Monocular 3D Object Detection [40.14197775884804]
MonoASRH is a novel monocular 3D detection framework composed of Efficient Hybrid Feature Aggregation Module (EH-FAM) and Adaptive Scale-Aware 3D Regression Head (ASRH)
EH-FAM employs multi-head attention with a global receptive field to extract semantic features for small-scale objects.
ASRH encodes 2D bounding box dimensions and then fuses scale features with the semantic features aggregated by EH-FAM.
arXiv Detail & Related papers (2024-11-05T02:33:25Z) - MLF-DET: Multi-Level Fusion for Cross-Modal 3D Object Detection [54.52102265418295]
We propose a novel and effective Multi-Level Fusion network, named as MLF-DET, for high-performance cross-modal 3D object DETection.
For the feature-level fusion, we present the Multi-scale Voxel Image fusion (MVI) module, which densely aligns multi-scale voxel features with image features.
For the decision-level fusion, we propose the lightweight Feature-cued Confidence Rectification (FCR) module, which exploits image semantics to rectify the confidence of detection candidates.
arXiv Detail & Related papers (2023-07-18T11:26:02Z) - MSeg3D: Multi-modal 3D Semantic Segmentation for Autonomous Driving [15.36416000750147]
We propose a multi-modal 3D semantic segmentation model (MSeg3D) with joint intra-modal feature extraction and inter-modal feature fusion.
MSeg3D still shows robustness and improves the LiDAR-only baseline.
arXiv Detail & Related papers (2023-03-15T13:13:03Z) - Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object
Detection [16.198358858773258]
Multi-modal 3D object detection has been an active research topic in autonomous driving.
It is non-trivial to explore the cross-modal feature fusion between sparse 3D points and dense 2D pixels.
Recent approaches either fuse the image features with the point cloud features that are projected onto the 2D image plane or combine the sparse point cloud with dense image pixels.
arXiv Detail & Related papers (2022-10-18T06:15:56Z) - MSMDFusion: Fusing LiDAR and Camera at Multiple Scales with Multi-Depth
Seeds for 3D Object Detection [89.26380781863665]
Fusing LiDAR and camera information is essential for achieving accurate and reliable 3D object detection in autonomous driving systems.
Recent approaches aim at exploring the semantic densities of camera features through lifting points in 2D camera images into 3D space for fusion.
We propose a novel framework that focuses on the multi-scale progressive interaction of the multi-granularity LiDAR and camera features.
arXiv Detail & Related papers (2022-09-07T12:29:29Z) - MBDF-Net: Multi-Branch Deep Fusion Network for 3D Object Detection [17.295359521427073]
We propose a Multi-Branch Deep Fusion Network (MBDF-Net) for 3D object detection.
In the first stage, our multi-branch feature extraction network utilizes Adaptive Attention Fusion modules to produce cross-modal fusion features from single-modal semantic features.
In the second stage, we use a region of interest (RoI) -pooled fusion module to generate enhanced local features for refinement.
arXiv Detail & Related papers (2021-08-29T15:40:15Z) - Similarity-Aware Fusion Network for 3D Semantic Segmentation [87.51314162700315]
We propose a similarity-aware fusion network (SAFNet) to adaptively fuse 2D images and 3D point clouds for 3D semantic segmentation.
We employ a late fusion strategy where we first learn the geometric and contextual similarities between the input and back-projected (from 2D pixels) point clouds.
We show that SAFNet significantly outperforms existing state-of-the-art fusion-based approaches across various data integrity.
arXiv Detail & Related papers (2021-07-04T09:28:18Z) - M3DSSD: Monocular 3D Single Stage Object Detector [82.25793227026443]
We propose a Monocular 3D Single Stage object Detector (M3DSSD) with feature alignment and asymmetric non-local attention.
The proposed M3DSSD achieves significantly better performance than the monocular 3D object detection methods on the KITTI dataset.
arXiv Detail & Related papers (2021-03-24T13:09:11Z) - Cross-Modality 3D Object Detection [63.29935886648709]
We present a novel two-stage multi-modal fusion network for 3D object detection.
The whole architecture facilitates two-stage fusion.
Our experiments on the KITTI dataset show that the proposed multi-stage fusion helps the network to learn better representations.
arXiv Detail & Related papers (2020-08-16T11:01:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.