論文の概要: Hybrid machine learning data assimilation for marine biogeochemistry
- arxiv url: http://arxiv.org/abs/2504.05218v1
- Date: Mon, 07 Apr 2025 16:04:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:09:07.666571
- Title: Hybrid machine learning data assimilation for marine biogeochemistry
- Title(参考訳): 海洋生物地球化学のためのハイブリッド機械学習データ同化
- Authors: Ieuan Higgs, Ross Bannister, Jozef Skákala, Alberto Carrassi, Stefano Ciavatta,
- Abstract要約: 海洋生物地球化学モデルは、気候変動や人的活動に対する生態系の反応を推定するだけでなく、予測にも重要である。
既存のDAメソッドは、観測されていない変数を効果的に更新するのに苦労するが、アンサンブルベースのメソッドは高複雑さモデルでは計算コストがかかりすぎる。
本研究では、観測変数と観測変数の統計的関係を学習することにより、機械学習が海洋生物地球化学DAを改善する方法を示す。
- 参考スコア(独自算出の注目度): 0.2383122657918106
- License:
- Abstract: Marine biogeochemistry models are critical for forecasting, as well as estimating ecosystem responses to climate change and human activities. Data assimilation (DA) improves these models by aligning them with real-world observations, but marine biogeochemistry DA faces challenges due to model complexity, strong nonlinearity, and sparse, uncertain observations. Existing DA methods applied to marine biogeochemistry struggle to update unobserved variables effectively, while ensemble-based methods are computationally too expensive for high-complexity marine biogeochemistry models. This study demonstrates how machine learning (ML) can improve marine biogeochemistry DA by learning statistical relationships between observed and unobserved variables. We integrate ML-driven balancing schemes into a 1D prototype of a system used to forecast marine biogeochemistry in the North-West European Shelf seas. ML is applied to predict (i) state-dependent correlations from free-run ensembles and (ii), in an ``end-to-end'' fashion, analysis increments from an Ensemble Kalman Filter. Our results show that ML significantly enhances updates for previously not-updated variables when compared to univariate schemes akin to those used operationally. Furthermore, ML models exhibit moderate transferability to new locations, a crucial step toward scaling these methods to 3D operational systems. We conclude that ML offers a clear pathway to overcome current computational bottlenecks in marine biogeochemistry DA and that refining transferability, optimizing training data sampling, and evaluating scalability for large-scale marine forecasting, should be future research priorities.
- Abstract(参考訳): 海洋生物地球化学モデルは、気候変動や人的活動に対する生態系の反応を推定するだけでなく、予測にも重要である。
データ同化(DA)は、これらのモデルを実世界の観測と整合させることで改善するが、海洋生物地球化学(DA)は、モデルの複雑さ、強い非線形性、希薄で不確実な観測によって困難に直面している。
海洋生物地球化学に適用される既存のDA法は、観測されていない変数を効果的に更新するのに苦労するが、アンサンブルに基づく手法は、高複雑海洋生物地球化学モデルでは計算に高すぎる。
本研究では、観測変数と観測変数の統計的関係を学習することにより、機械学習(ML)が海洋生物地球化学のDAを改善する方法を示す。
我々は,北西ヨーロッパ棚海における海洋生物地球化学の予測に用いるシステムの1次元プロトタイプにML駆動のバランススキームを統合する。
MLは予測に適用される
(i)フリーランアンサンブルと状態依存相関
(ii) 'end-to-end' の方法では、Ensemble Kalman Filter からの解析インクリメントが増加する。
本研究の結果から,MLは未更新変数の更新を,操作時と同様の単変量スキームと比較して大幅に向上させることがわかった。
さらに、MLモデルは、これらの手法を3D運用システムに拡張するための重要なステップである、新しい場所への適度な転送可能性を示す。
我々は,MLが海洋生物地球化学 DA における現在の計算ボトルネックを克服するための明確な経路を提供するとともに,伝達性の改善,トレーニングデータサンプリングの最適化,大規模海洋予測のスケーラビリティ評価が今後の研究優先事項である,と結論付けた。
関連論文リスト
- Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
メタン (CH_4) は強力な温室効果ガスであり、20年間で二酸化炭素 (CO_2) の86倍の温暖化に寄与する。
この研究は、ショートウェーブ赤外線(SWIR)帯域におけるメタン点源検出センサの既存の情報を拡張する。
従来の機械学習(ML)アプローチと同様に、最先端の技術をレビューする。
論文 参考訳(メタデータ) (2024-08-27T15:03:20Z) - AI enhanced data assimilation and uncertainty quantification applied to
Geological Carbon Storage [0.0]
本稿では,Surrogate-based hybrid ESMDA (SH-ESMDA)を導入し,Surrogate-based hybrid ESMDA (SH-ESMDA)について述べる。
また,SurrogateをベースとしたHybrid RML(SH-RML)も導入する。
以上の結果より,SH-RMLは従来のESMDAと比較して不確実性が高いことが示唆された。
論文 参考訳(メタデータ) (2024-02-09T00:24:46Z) - SSL-SoilNet: A Hybrid Transformer-based Framework with Self-Supervised Learning for Large-scale Soil Organic Carbon Prediction [2.554658234030785]
本研究は,自己指導型コントラスト学習を通じて,マルチモーダル特徴間の地理的関連を学習することを目的とした,新しいアプローチを提案する。
提案手法は、2つの異なる大規模データセットに対して厳密なテストを行っている。
論文 参考訳(メタデータ) (2023-08-07T13:44:44Z) - Towards Machine Learning-based Fish Stock Assessment [0.0]
本稿では,機械学習モデルを用いたストックパラメータの推定と予測の改善について検討する。
本稿では,古典統計ストックアセスメントモデルと教師付きMLを組み合わせたハイブリッドモデルを提案する。
論文 参考訳(メタデータ) (2023-08-07T08:44:15Z) - Using evolutionary machine learning to characterize and optimize
co-pyrolysis of biomass feedstocks and polymeric wastes [14.894507238371768]
共熱分解は、結果の液体燃料の量および品質パラメータを改善するための有望な戦略である。
機械学習(ML)は、既存のデータを活用することで、このような問題に対処する機能を提供する。
本研究は, バイオマス-ポリマー共熱分解プロセスの生成物を定量化するために, 進化的MLアプローチを導入することを目的とする。
論文 参考訳(メタデータ) (2023-05-24T19:59:21Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
我々は、IlluminaやPacBioといった一般的なシークエンシングプラットフォームのエラープロファイルを模倣するために、SARS-CoV-2ゲノム配列を摂動する方法をいくつか紹介する。
シミュレーションに基づくいくつかのアプローチは、入力シーケンスに対する特定の敵攻撃に対する特定の埋め込み手法に対して、他の手法よりも堅牢(かつ正確)であることを示す。
論文 参考訳(メタデータ) (2022-07-18T19:16:56Z) - Using Explainable Boosting Machine to Compare Idiographic and Nomothetic
Approaches for Ecological Momentary Assessment Data [2.0824228840987447]
本稿では,非線形解釈型機械学習(ML)モデルを用いた分類問題について検討する。
木々の様々なアンサンブルは、不均衡な合成データセットと実世界のデータセットを用いて線形モデルと比較される。
2つの実世界のデータセットのうちの1つで、知識蒸留法は改善されたAUCスコアを達成する。
論文 参考訳(メタデータ) (2022-04-04T17:56:37Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) は,環境と数回交流した後の平衡政策を学習する。
自律運転シミュレーションベンチマークにおいて,本手法を実験的に実証した。
論文 参考訳(メタデータ) (2022-03-14T17:24:03Z) - Improving Molecular Representation Learning with Metric
Learning-enhanced Optimal Transport [49.237577649802034]
分子レグレッション問題に対する一般化能力を高めるために,MROTと呼ばれる新しい最適輸送ベースアルゴリズムを開発した。
MROTは最先端のモデルよりも優れており、新しい物質の発見を加速する有望な可能性を示している。
論文 参考訳(メタデータ) (2022-02-13T04:56:18Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
本研究の目的は、代替燃料の物理的特性を予測するためのクロージャ方程式として機能する、安価で計算可能な機械学習モデルを構築することである。
これらのモデルは、MDシミュレーションのデータベースや、データ融合-忠実性アプローチによる実験的な測定を用いて訓練することができる。
その結果,MLモデルでは,広範囲の圧力および温度条件の燃料特性を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2021-10-18T14:43:50Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。