論文の概要: Utility-Focused LLM Annotation for Retrieval and Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2504.05220v4
- Date: Wed, 27 Aug 2025 10:51:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-28 12:43:57.44541
- Title: Utility-Focused LLM Annotation for Retrieval and Retrieval-Augmented Generation
- Title(参考訳): 検索・検索・蓄積用LCMアノテーションの有用性
- Authors: Hengran Zhang, Minghao Tang, Keping Bi, Jiafeng Guo, Shihao Liu, Daiting Shi, Dawei Yin, Xueqi Cheng,
- Abstract要約: 本稿では,大規模言語モデル (LLM) を用いた検索・検索・拡張生成システム (RAG) の訓練における文書ユーティリティのアノテートについて検討する。
以上の結果から,LLM生成アノテーションは,人間のアノテーションや下流QAメトリクスのみを訓練したモデルと比較して,ドメイン外検索性能の向上とRAG結果の改善を図っている。
- 参考スコア(独自算出の注目度): 96.18720164390699
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the use of large language models (LLMs) for annotating document utility in training retrieval and retrieval-augmented generation (RAG) systems, aiming to reduce dependence on costly human annotations. We address the gap between retrieval relevance and generative utility by employing LLMs to annotate document utility. To effectively utilize multiple positive samples per query, we introduce a novel loss that maximizes their summed marginal likelihood. Using the Qwen-2.5-32B model, we annotate utility on the MS MARCO dataset and conduct retrieval experiments on MS MARCO and BEIR, as well as RAG experiments on MS MARCO QA, NQ, and HotpotQA. Our results show that LLM-generated annotations enhance out-of-domain retrieval performance and improve RAG outcomes compared to models trained solely on human annotations or downstream QA metrics. Furthermore, combining LLM annotations with just 20% of human labels achieves performance comparable to using full human annotations. Our study offers a comprehensive approach to utilizing LLM annotations for initializing QA systems on new corpora.
- Abstract(参考訳): 本稿では,大規模言語モデル (LLM) を用いて,コストのかかる人的アノテーションへの依存を減らすことを目的とした,検索・検索・拡張生成システム (RAG) の訓練における文書ユーティリティのアノテートについて検討する。
文書ユーティリティのアノテートにLLMを用いることにより,検索関連性と生成ユーティリティのギャップを解消する。
クエリ毎の複数の正のサンプルを効果的に活用するために,要約された限界確率を最大化する新規な損失を導入する。
Qwen-2.5-32Bモデルを用いて、MS MARCOデータセットのアノテートを行い、MS MARCOとBEIRの検索実験を行い、MS MARCO QA、NQ、HotpotQAのRAG実験を行った。
以上の結果から,LLM生成アノテーションは,人間のアノテーションや下流QAメトリクスのみを訓練したモデルと比較して,ドメイン外検索性能の向上とRAG結果の改善を図っている。
さらに、LLMアノテーションと人間のラベルのわずか20%の組み合わせは、完全な人間のアノテーションと同等のパフォーマンスを達成する。
本研究は,新たなコーパス上でのQAシステムの初期化にLLMアノテーションを利用するための包括的アプローチを提供する。
関連論文リスト
- Harnessing the Power of Reinforcement Learning for Language-Model-Based Information Retriever via Query-Document Co-Augmentation [35.70731674603417]
LLM(Large Language Models)は、ユーザクエリとコーパスドキュメントの拡張に使用することができる。
ユーザクエリとコーパスドキュメントの両方を拡張できるLLMベースのレトリバーを提案する。
提案手法は,疎密な設定と密な設定の両方において,LLMに基づく検索性能を大幅に向上させる。
論文 参考訳(メタデータ) (2025-06-23T14:14:43Z) - Rank-R1: Enhancing Reasoning in LLM-based Document Rerankers via Reinforcement Learning [76.50690734636477]
ランキングタスクを実行する前にユーザクエリと候補文書の両方を推論する新しいLCMベースのリランカである Rank-R1 を導入する。
TREC DL と BRIGHT データセットを用いた実験により,Ranc-R1 が特に複雑なクエリに対して非常に有効であることが判明した。
論文 参考訳(メタデータ) (2025-03-08T03:14:26Z) - From Human Annotation to LLMs: SILICON Annotation Workflow for Management Research [13.818244562506138]
LLM(Large Language Models)は、人間のアノテーションに対する費用対効果と効率的な代替手段を提供する。
本稿では、SILICON (Systematic Inference with LLMs for Information Classification and Notation) ワークフローを紹介する。
このワークフローは、人間のアノテーションの確立した原則と、体系的な迅速な最適化とモデル選択を統合している。
論文 参考訳(メタデータ) (2024-12-19T02:21:41Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
Invar-RAGと呼ばれる2段階ファインチューニングアーキテクチャを提案する。
検索段階では、LORAに基づく表現学習を統合してLLMベースの検索器を構築する。
生成段階では、抽出した情報に基づいて回答を生成する際のLCM精度を向上させるための精細調整法が用いられる。
論文 参考訳(メタデータ) (2024-11-11T14:25:37Z) - DIRAS: Efficient LLM Annotation of Document Relevance in Retrieval Augmented Generation [37.823892101215684]
ドメイン固有のクエリは通常、浅いセマンティックな関連性を超えて、関連性のニュアンス定義を必要とする。
人間またはGPT-4アノテーションは費用がかかり、全ての(クエリ、ドキュメント)ペアをカバーできない。
DIRAS (Domain-specific Information Retrieval with Scalability) は手動アノテーションのないスキーマである。
論文 参考訳(メタデータ) (2024-06-20T10:04:09Z) - PromptReps: Prompting Large Language Models to Generate Dense and Sparse Representations for Zero-Shot Document Retrieval [76.50690734636477]
本稿では,PmptRepsを提案する。このPmptRepsは,トレーニングを必要とせず,コーパス全体から検索できる機能である。
検索システムは、高密度テキスト埋め込みとスパースバッグ・オブ・ワード表現の両方を利用する。
論文 参考訳(メタデータ) (2024-04-29T04:51:30Z) - Large Language Models for Data Annotation and Synthesis: A Survey [49.8318827245266]
本調査は,データアノテーションと合成のための大規模言語モデルの有用性に焦点を当てる。
LLMがアノテートできるデータタイプの詳細な分類、LLM生成アノテーションを利用したモデルの学習戦略のレビュー、データアノテーションと合成にLLMを使用する際の主な課題と制限に関する詳細な議論を含む。
論文 参考訳(メタデータ) (2024-02-21T00:44:04Z) - LLatrieval: LLM-Verified Retrieval for Verifiable Generation [67.93134176912477]
検証可能な生成は、大きな言語モデル(LLM)がドキュメントをサポートするテキストを生成することを目的としている。
本稿では,LLatrieval (Large Language Model Verified Retrieval)を提案する。
実験により、LLatrievalは幅広いベースラインを著しく上回り、最先端の結果が得られることが示された。
論文 参考訳(メタデータ) (2023-11-14T01:38:02Z) - CoAnnotating: Uncertainty-Guided Work Allocation between Human and Large
Language Models for Data Annotation [94.59630161324013]
本稿では,非構造化テキストの大規模共同アノテーションのための新しいパラダイムであるCoAnnotatingを提案する。
我々の実証研究は、CoAnnotatingが、異なるデータセット上の結果から作業を割り当てる効果的な手段であることを示し、ランダムベースラインよりも最大21%のパフォーマンス改善を実現している。
論文 参考訳(メタデータ) (2023-10-24T08:56:49Z) - Automated Annotation with Generative AI Requires Validation [0.0]
生成型大規模言語モデル(LLM)は、テキストアノテーションの手順を増強するための強力なツールである。
LLMのアノテーションポテンシャルを原則的かつ効率的な方法で活用するためのワークフローを概説する。
テキストアノテーションのLLM性能は有望であるが,データセットとアノテーションの型の両方に高い関連性があることが判明した。
論文 参考訳(メタデータ) (2023-05-31T20:50:45Z) - Query Rewriting for Retrieval-Augmented Large Language Models [139.242907155883]
大規模言語モデル(LLM)は、検索対象のパイプラインで強力なブラックボックスリーダーを動作させる。
この作業では、検索拡張LDMに対する以前の検索テーマ読み込みの代わりに、新しいフレームワークであるRewrite-Retrieve-Readを導入する。
論文 参考訳(メタデータ) (2023-05-23T17:27:50Z) - Description-Based Text Similarity [59.552704474862004]
我々は、その内容の抽象的な記述に基づいて、テキストを検索する必要性を特定する。
そこで本研究では,近隣の標準探索で使用する場合の精度を大幅に向上する代替モデルを提案する。
論文 参考訳(メタデータ) (2023-05-21T17:14:31Z) - Active Learning for Abstractive Text Summarization [50.79416783266641]
本稿では,抽象テキスト要約におけるアクティブラーニングのための最初の効果的なクエリ戦略を提案する。
ALアノテーションにおける私たちの戦略は、ROUGEと一貫性スコアの点からモデル性能を向上させるのに役立ちます。
論文 参考訳(メタデータ) (2023-01-09T10:33:14Z) - Assisted Text Annotation Using Active Learning to Achieve High Quality
with Little Effort [9.379650501033465]
研究者は、手動の注釈だけで、大規模で高品質な注釈付きデータセットを作成できるツールを提案する。
我々は、アクティブラーニング(AL)アプローチと事前訓練された言語モデルを組み合わせて、アノテーションカテゴリを半自動で識別する。
予備的な結果から,ALを用いることで,複雑なフレームや微妙なフレームを正しく分類するアノテーションの数が大幅に削減されることがわかった。
論文 参考訳(メタデータ) (2021-12-15T13:14:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。