Measuring Rényi entropy using a projected Loschmidt echo
- URL: http://arxiv.org/abs/2504.05237v1
- Date: Mon, 07 Apr 2025 16:21:53 GMT
- Title: Measuring Rényi entropy using a projected Loschmidt echo
- Authors: Yi-Neng Zhou, Robin Löwenberg, Julian Sonner,
- Abstract summary: We present efficient and practical protocols to measure the second R'enyi entropy (RE), whose exponential is known as the purity.<n>We achieve this by establishing a direct connection to a Loschmidt echo (LE) type measurement sequence, applicable to quantum many-body systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present efficient and practical protocols to measure the second R\'enyi entropy (RE), whose exponential is known as the purity. We achieve this by establishing a direct connection to a Loschmidt echo (LE) type measurement sequence, applicable to quantum many-body systems. Notably, our approach does not rely on random-noise averaging, a feature that can be extended to protocols to measure out-of-time-order correlation functions (OTOCs), as we demonstrate. By way of example, we show that our protocols can be practically implemented in superconducting qubit-based platforms, as well as in cavity-QED trapped ultra-cold gases.
Related papers
- Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching [33.9461078261722]
We introduce Adjoint Sampling, a highly scalable and efficient algorithm for learning diffusion processes that sample from unnormalized densities.
We show how to incorporate key symmetries, as well as periodic boundary conditions, for modeling molecules in both cartesian and torsional coordinates.
We demonstrate the effectiveness of our approach through extensive experiments on classical energy functions, and further scale up to neural network-based energy models.
arXiv Detail & Related papers (2025-04-16T02:20:06Z) - Direct estimation of arbitrary observables of an oscillator [32.73124984242397]
We introduce the Optimized Routine for Estimation of any Observable (OREO)<n>OREO maps the expectation value of arbitrary oscillator observables onto a transmon state for efficient single-shot measurement.<n>We demonstrate OREO in a bosonic cQED system as a means to efficiently measure phase-spaceratures and their higher moments.
arXiv Detail & Related papers (2025-03-13T14:58:21Z) - Harnessing Nth Root Gates for Energy Storage [30.733286944793527]
We explore the use of fractional control-not gates in quantum thermodynamics.
Nth-root gate allows for a paced application of two-qubit operations.
We apply it in quantum thermodynamic protocols for charging a quantum battery.
arXiv Detail & Related papers (2024-09-16T14:57:55Z) - Qudit-native measurement protocol for dynamical correlations using Hadamard tests [0.0]
Dynamical correlations reveal important out-of-equilibrium properties of the underlying quantum many-body system.<n>We propose a modified protocol to overcome this limitation by decomposing qudit observables into unitary operations.<n>Our scheme can readily be implemented on various platforms and offers a wide range of applications.
arXiv Detail & Related papers (2024-07-03T18:01:29Z) - Control landscapes for high-fidelity generation of C-NOT and C-PHASE gates with coherent and environmental driving [41.94295877935867]
We consider the problem of high fidelity generation of two-qubit C-NOT and C-PHASE (with a detailed study of C-Z) gates in presence of the environment.
We study quantum control landscapes which describe the behaviour of the fidelity as a function of the controls.
arXiv Detail & Related papers (2024-05-23T00:04:19Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - Quantum key distribution rates from semidefinite programming [0.0]
We introduce an efficient algorithm for computing the key rate in quantum key distribution protocols.
The resulting algorithm is easy to implement and easy to use.
We use it to reanalyse experimental data to demonstrate how higher key rates can be achieved.
arXiv Detail & Related papers (2022-11-10T17:47:37Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Performance analysis of continuous-variable quantum key distribution
using non-Gaussian states [0.0]
In this study, we analyze the efficiency of a protocol with discrete modulation of continuous variable non-Gaussian states.
We calculate the secure key generation rate against collective attacks using the fact that Eve's information can be bounded based on the protocol.
arXiv Detail & Related papers (2021-12-19T11:55:17Z) - Bounds on semi-device-independent quantum random number expansion
capabilities [0.0]
It's explicitly proved that the maximum certifiable entropy that can be obtained through this set of protocols is $-logleft[frac12left+frac1sqrt3right]$.
It's also established that certifiable entropy can be generated as soon as dimension witness crosses the classical bound, making the protocol noise-robust and useful in practical applications.
arXiv Detail & Related papers (2021-11-28T08:54:49Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.