Deep Learning for Double Auction
- URL: http://arxiv.org/abs/2504.05355v1
- Date: Mon, 07 Apr 2025 08:56:32 GMT
- Title: Deep Learning for Double Auction
- Authors: Jiayin Liu, Chenglong Zhang,
- Abstract summary: Finding an optimal auction mechanism is extremely difficult due to the constraints of imperfect information, incentive compatibility (IC), and individual rationality (IR)<n>We develop deep learning methods for double auctions, where imperfect information exists on both the demand and supply sides.<n>We achieve generalizability by leveraging a transformer-based architecture to model market participants as sequences for varying market sizes.
- Score: 3.3799233225949576
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Auctions are important mechanisms extensively implemented in various markets, e.g., search engines' keyword auctions, antique auctions, etc. Finding an optimal auction mechanism is extremely difficult due to the constraints of imperfect information, incentive compatibility (IC), and individual rationality (IR). In addition to the traditional economic methods, some recently attempted to find the optimal (single) auction using deep learning methods. Unlike those attempts focusing on single auctions, we develop deep learning methods for double auctions, where imperfect information exists on both the demand and supply sides. The previous attempts on single auction cannot directly apply to our contexts and those attempts additionally suffer from limited generalizability, inefficiency in ensuring the constraints, and learning fluctuations. We innovate in designing deep learning models for solving the more complex problem and additionally addressing the previous models' three limitations. Specifically, we achieve generalizability by leveraging a transformer-based architecture to model market participants as sequences for varying market sizes; we utilize the numerical features of the constraints and pre-treat them for a higher learning efficiency; we develop a gradient-conflict-elimination scheme to address the problem of learning fluctuation. Extensive experimental evaluations demonstrate the superiority of our approach to classical and machine learning baselines.
Related papers
- Encapsulating Knowledge in One Prompt [56.31088116526825]
KiOP encapsulates knowledge from various models into a solitary prompt without altering the original models or requiring access to the training data.
From a practicality standpoint, this paradigm proves the effectiveness of Visual Prompt in data inaccessible contexts.
Experiments across various datasets and models demonstrate the efficacy of the proposed KiOP knowledge transfer paradigm.
arXiv Detail & Related papers (2024-07-16T16:35:23Z) - Deep Reinforcement Learning for Sequential Combinatorial Auctions [40.89021064082742]
Revenue-optimal auction design is a challenging problem with significant theoretical and practical implications.
We propose a new reinforcement learning framework tailored for sequential auctions that leverages first-order gradients.
Our approach achieves significant improvement in revenue over both analytical baselines and standard reinforcement learning algorithms.
arXiv Detail & Related papers (2024-07-10T20:00:22Z) - Imitating Cost-Constrained Behaviors in Reinforcement Learning [8.143750358586072]
In this paper, we provide methods that match expert distributions in the presence of trajectory cost constraints.
We empirically show that leading imitation learning approaches imitate cost-constrained behaviors poorly.
arXiv Detail & Related papers (2024-03-26T07:41:54Z) - Understanding Iterative Combinatorial Auction Designs via Multi-Agent Reinforcement Learning [10.41350502488723]
We investigate whether multi-agent reinforcement learning algorithms can be used to understand iterative auctions.
We find that MARL can indeed benefit auction analysis, but that deploying it effectively is nontrivial.
We illustrate the promise of our resulting approach by using it to evaluate a specific rule change to a clock auction.
arXiv Detail & Related papers (2024-02-29T18:16:13Z) - Exploring Federated Unlearning: Analysis, Comparison, and Insights [101.64910079905566]
federated unlearning enables the selective removal of data from models trained in federated systems.<n>This paper examines existing federated unlearning approaches, examining their algorithmic efficiency, impact on model accuracy, and effectiveness in preserving privacy.<n>We propose the OpenFederatedUnlearning framework, a unified benchmark for evaluating federated unlearning methods.
arXiv Detail & Related papers (2023-10-30T01:34:33Z) - Refined Mechanism Design for Approximately Structured Priors via Active
Regression [50.71772232237571]
We consider the problem of a revenue-maximizing seller with a large number of items for sale to $n$ strategic bidders.
It is well-known that optimal and even approximately-optimal mechanisms for this setting are notoriously difficult to characterize or compute.
arXiv Detail & Related papers (2023-10-11T20:34:17Z) - New Guarantees for Learning Revenue Maximizing Menus of Lotteries and Two-Part Tariffs [19.34580414545524]
We study the learnability of two classes of mechanisms prominent in economics, namely menus of lotteries and two-part tariffs.
We provide the first online learning algorithms for menus of lotteries and two-part tariffs with strong regret-bound guarantees.
arXiv Detail & Related papers (2023-02-22T23:35:50Z) - Online Learning under Budget and ROI Constraints via Weak Adaptivity [57.097119428915796]
Existing primal-dual algorithms for constrained online learning problems rely on two fundamental assumptions.
We show how such assumptions can be circumvented by endowing standard primal-dual templates with weakly adaptive regret minimizers.
We prove the first best-of-both-worlds no-regret guarantees which hold in absence of the two aforementioned assumptions.
arXiv Detail & Related papers (2023-02-02T16:30:33Z) - A Context-Integrated Transformer-Based Neural Network for Auction Design [25.763612577196124]
One of the central problems in auction design is developing an incentive-compatible mechanism that maximizes the auctioneer's expected revenue.
We propose $mathttCITransNet$, a context-integrated transformer-based neural network for optimal auction design.
We show by extensive experiments that $mathttCITransNet$ can recover the known optimal solutions in single-item settings, outperform strong baselines in multi-item auctions, and generalize well to cases other than those in training.
arXiv Detail & Related papers (2022-01-29T03:47:00Z) - Learning Revenue-Maximizing Auctions With Differentiable Matching [50.62088223117716]
We propose a new architecture to approximately learn incentive compatible, revenue-maximizing auctions from sampled valuations.
Our architecture uses the Sinkhorn algorithm to perform a differentiable bipartite matching which allows the network to learn strategyproof revenue-maximizing mechanisms.
arXiv Detail & Related papers (2021-06-15T04:37:57Z) - PreferenceNet: Encoding Human Preferences in Auction Design with Deep
Learning [31.509832387330928]
We propose PreferenceNet, an extension of existing neural-network-based auction mechanisms to encode constraints.
We show that our proposed method is competitive with current state-of-the-art neural-network based auction designs.
arXiv Detail & Related papers (2021-06-06T19:29:40Z) - ProportionNet: Balancing Fairness and Revenue for Auction Design with
Deep Learning [55.76903822619047]
We study the design of revenue-maximizing auctions with strong incentive guarantees.
We extend techniques for approximating auctions using deep learning to address concerns of fairness while maintaining high revenue and strong incentive guarantees.
arXiv Detail & Related papers (2020-10-13T13:54:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.