GraphPINE: Graph Importance Propagation for Interpretable Drug Response Prediction
- URL: http://arxiv.org/abs/2504.05454v1
- Date: Mon, 07 Apr 2025 19:42:12 GMT
- Title: GraphPINE: Graph Importance Propagation for Interpretable Drug Response Prediction
- Authors: Yoshitaka Inoue, Tianfan Fu, Augustin Luna,
- Abstract summary: GraphPINE is a graph neural network (GNN) architecture leveraging domain-specific prior knowledge to node importance.<n>We apply GraphPINE to cancer drug response prediction using drug screening and gene data collected for over 5,000 gene nodes.<n>GraphPINE achieves a PR-AUC of 0.894 and ROC-AUC of 0.796 across 952 drugs.
- Score: 10.528489471229946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explainability is necessary for many tasks in biomedical research. Recent explainability methods have focused on attention, gradient, and Shapley value. These do not handle data with strong associated prior knowledge and fail to constrain explainability results based on known relationships between predictive features. We propose GraphPINE, a graph neural network (GNN) architecture leveraging domain-specific prior knowledge to initialize node importance optimized during training for drug response prediction. Typically, a manual post-prediction step examines literature (i.e., prior knowledge) to understand returned predictive features. While node importance can be obtained for gradient and attention after prediction, node importance from these methods lacks complementary prior knowledge; GraphPINE seeks to overcome this limitation. GraphPINE differs from other GNN gating methods by utilizing an LSTM-like sequential format. We introduce an importance propagation layer that unifies 1) updates for feature matrix and node importance and 2) uses GNN-based graph propagation of feature values. This initialization and updating mechanism allows for informed feature learning and improved graph representation. We apply GraphPINE to cancer drug response prediction using drug screening and gene data collected for over 5,000 gene nodes included in a gene-gene graph with a drug-target interaction (DTI) graph for initial importance. The gene-gene graph and DTIs were obtained from curated sources and weighted by article count discussing relationships between drugs and genes. GraphPINE achieves a PR-AUC of 0.894 and ROC-AUC of 0.796 across 952 drugs. Code is available at https://anonymous.4open.science/r/GraphPINE-40DE.
Related papers
- Graph data modelling for outcome prediction in oropharyngeal cancer
patients [38.37247384790338]
Graph neural networks (GNNs) are becoming increasingly popular in the medical domain for the tasks of disease classification and outcome prediction.
We propose a patient hypergraph network (PHGN) which has been investigated in an inductive learning setup for binary outcome prediction in oropharyngeal cancer (OPC) patients.
arXiv Detail & Related papers (2023-10-04T16:09:35Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - Analysis of Drug repurposing Knowledge graphs for Covid-19 [0.0]
This study proposes a set of candidate drugs for COVID-19 using Drug repurposing knowledge graph (DRKG)
DRKG is a biological knowledge graph constructed using a vast amount of open source biomedical knowledge.
nodes and relation embeddings are learned using knowledge graph embedding models and neural network and attention related models.
arXiv Detail & Related papers (2022-12-07T19:14:17Z) - A Deep Learning Approach to the Prediction of Drug Side-Effects on
Molecular Graphs [2.4087148947930634]
We develop a methodology to predict drug side-effects using Graph Neural Networks.
We build a dataset from freely accessible and well established data sources.
The results show that our method has an improved classification capability, under many parameters and metrics.
arXiv Detail & Related papers (2022-11-30T10:12:41Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
Graphs are a powerful tool for representing and analyzing unstructured, non-Euclidean data ubiquitous in the healthcare domain.
Recent works have shown that considering relationships between input data samples have a positive regularizing effect for the downstream task.
We propose Graph-in-Graph (GiG), a neural network architecture for protein classification and brain imaging applications.
arXiv Detail & Related papers (2022-04-01T10:01:37Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
We propose a new self-supervised learning framework, Graph Information Aided Node feature exTraction (GIANT)
GIANT makes use of the eXtreme Multi-label Classification (XMC) formalism, which is crucial for fine-tuning the language model based on graph information.
We demonstrate the superior performance of GIANT over the standard GNN pipeline on Open Graph Benchmark datasets.
arXiv Detail & Related papers (2021-10-29T19:55:12Z) - Heterogeneous Similarity Graph Neural Network on Electronic Health
Records [74.66674469510251]
We propose Heterogeneous Similarity Graph Neural Network (HSGNN) to analyze EHRs with a novel heterogeneous GNN.
Our framework consists of two parts: one is a preprocessing method and the other is an end-to-end GNN.
The GNN takes all homogeneous graphs as input and fuses all of them into one graph to make a prediction.
arXiv Detail & Related papers (2021-01-17T23:14:29Z) - Latent-Graph Learning for Disease Prediction [44.26665239213658]
We show that it is possible to learn a single, optimal graph towards the GCN's downstream task of disease classification.
Unlike commonly employed spectral GCN approaches, our GCN is spatial and inductive, and can thus infer previously unseen patients as well.
arXiv Detail & Related papers (2020-03-27T08:18:01Z) - Differentiable Graph Module (DGM) for Graph Convolutional Networks [44.26665239213658]
Differentiable Graph Module (DGM) is a learnable function that predicts edge probabilities in the graph which are optimal for the downstream task.
We provide an extensive evaluation of applications from the domains of healthcare (disease prediction), brain imaging (age prediction), computer graphics (3D point cloud segmentation), and computer vision (zero-shot learning)
arXiv Detail & Related papers (2020-02-11T12:59:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.