論文の概要: Large-Scale Classification of Shortwave Communication Signals with Machine Learning
- arxiv url: http://arxiv.org/abs/2504.05455v1
- Date: Mon, 07 Apr 2025 19:45:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:30:46.420978
- Title: Large-Scale Classification of Shortwave Communication Signals with Machine Learning
- Title(参考訳): 機械学習を用いた短波通信信号の大規模分類
- Authors: Stefan Scholl,
- Abstract要約: 本稿では,160短波無線信号の分類における深層学習手法を提案する。
深層畳み込みニューラルネットワークが使用され、160の典型的な短波信号クラスを認識するように訓練されている。
ネットワークは1秒の観測時間に対して最大90%の精度を達成する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents a deep learning approach to the classification of 160 shortwave radio signals. It addresses the typical challenges of the shortwave spectrum, which are the large number of different signal types, the presence of various analog modulations and ionospheric propagation. As a classifier a deep convolutional neural network is used, that is trained to recognize 160 typical shortwave signal classes. The approach is blind and therefore does not require preknowledge or special preprocessing of the signal and no manual design of discriminative features for each signal class. The network is trained on a large number of synthetically generated signals and high quality recordings. Finally, the network is evaluated on real-world radio signals obtained from globally deployed receiver hardware and achieves up to 90% accuracy for an observation time of only 1 second.
- Abstract(参考訳): 本稿では,160短波無線信号の分類における深層学習手法を提案する。
これは、多くの異なる信号タイプ、様々なアナログ変調と電離圏伝播の存在である短波スペクトルの典型的な課題に対処する。
分類器として深部畳み込みニューラルネットワークが使用され、160の典型的な短波信号クラスを認識するように訓練される。
アプローチは盲目であるため、信号の事前知識や特別な前処理は必要とせず、各信号クラスの識別的特徴を手動で設計する必要はない。
ネットワークは、多数の合成信号と高品質な記録に基づいて訓練されている。
最後に、グローバルに展開された受信機ハードウェアから得られた実世界の無線信号に基づいてネットワークを評価し、1秒の観測時間に対して最大90%の精度を達成する。
関連論文リスト
- RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge [66.33067693672696]
本稿では、深層学習手法を利用したデータ駆動手法を用いて、高周波信号における干渉拒否の重大な問題に対処する。
本論文の主な貢献は、RF信号データセットであるRF Challengeの導入である。
論文 参考訳(メタデータ) (2024-09-13T13:53:41Z) - Multi-task Learning for Radar Signal Characterisation [48.265859815346985]
本稿では,マルチタスク学習(MTL)問題として,レーダ信号の分類と特徴化に取り組むためのアプローチを提案する。
本稿では,複数のレグレッションタスクと分類タスクを同時最適化するIQST(IQ Signal Transformer)を提案する。
合成レーダデータセット上で提案したMTLモデルの性能を示すとともに,レーダ信号の特徴付けのための一級ベンチマークも提供する。
論文 参考訳(メタデータ) (2023-06-19T12:01:28Z) - Modulation Classification Through Deep Learning Using Resolution
Transformed Spectrograms [3.9511559419116224]
畳み込みニューラルネットワーク(CNN)の近代的アーキテクチャを用いた自動変調分類(AMC)手法を提案する。
我々は、受信したI/Qデータから99.61%の計算負荷削減と8倍の高速変換をもたらす分光器の分解能変換を行う。
この性能は、SqueezeNet、Resnet-50、InceptionResnet-V2、Inception-V3、VGG-16、Densenet-201といった既存のCNNモデルで評価される。
論文 参考訳(メタデータ) (2023-06-06T16:14:15Z) - Space-based gravitational wave signal detection and extraction with deep
neural network [13.176946557548042]
宇宙ベースの重力波検出器(GW)は、現在の地上での観測でほぼ不可能に近い音源からの信号を観測することができる。
本稿では,全宇宙GWソースに対して高精度なGW信号検出・抽出手法を提案する。
論文 参考訳(メタデータ) (2022-07-15T11:48:15Z) - Classification of Intra-Pulse Modulation of Radar Signals by Feature
Fusion Based Convolutional Neural Networks [5.199765487172328]
本研究では、パルス内変調型レーダ信号を自動的に認識するディープラーニングに基づく新しい手法を提案する。
提案するFF-CNN技術は,現在の最先端技術よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-19T20:18:17Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
空間、時間、周波数領域にわたる無線スペクトルのモニタリングは、5Gと6G以上の通信技術において重要な特徴となる。
本稿では,空間領域全体にわたる不規則分散計測を補間するGAN(Generative Adversarial Network)機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-23T22:25:10Z) - Meta-Learning Sparse Implicit Neural Representations [69.15490627853629]
入射神経表現は、一般的な信号を表す新しい道である。
現在のアプローチは、多数の信号やデータセットに対してスケールすることが難しい。
メタ学習型スパースニューラル表現は,高密度メタ学習モデルよりもはるかに少ない損失が得られることを示す。
論文 参考訳(メタデータ) (2021-10-27T18:02:53Z) - Open-set Classification of Common Waveforms Using A Deep Feed-forward
Network and Binary Isolation Forest Models [13.078132799573705]
受信信号の分類には深層パーセプトロンアーキテクチャを用いる。
システムは、0dB以上のSNRで98%の精度で、オープンセットモードで正しく分類することができる。
論文 参考訳(メタデータ) (2021-10-01T08:15:26Z) - Deep Learning Radio Frequency Signal Classification with Hybrid Images [0.0]
入力トレーニングデータに使用できるさまざまな前処理ステップに注目し、結果を固定されたディープラーニングアーキテクチャでテストする。
本稿では,時間領域情報と周波数領域情報の両方を利用するハイブリッド画像を提案し,コンピュータビジョン問題として分類する。
論文 参考訳(メタデータ) (2021-05-19T11:12:09Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
分析や分類に有用な特徴を効率的に抽出する識別機構を備えた生体音響信号分類器を提案する。
タスク指向の現在のバイオ音響認識法とは異なり、提案モデルは入力信号をベクトル部分空間に変換することに依存する。
提案法の有効性は,アヌラン,ミツバチ,蚊の3種の生物音響データを用いて検証した。
論文 参考訳(メタデータ) (2021-03-18T11:01:21Z) - Detection of gravitational-wave signals from binary neutron star mergers
using machine learning [52.77024349608834]
本稿では,重力波検出器の時系列ひずみデータを用いたニューラルネットワークに基づく機械学習アルゴリズムを提案する。
信号対雑音比が25未満の信号に対する感度は6因子改善した。
保守的な推定は、我々のアルゴリズムが信号の到着からアラート発生までの平均10.2秒の遅延を発生させることを示している。
論文 参考訳(メタデータ) (2020-06-02T10:20:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。