論文の概要: Classification of Intra-Pulse Modulation of Radar Signals by Feature
Fusion Based Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2205.09834v1
- Date: Thu, 19 May 2022 20:18:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-23 15:39:35.329578
- Title: Classification of Intra-Pulse Modulation of Radar Signals by Feature
Fusion Based Convolutional Neural Networks
- Title(参考訳): 特徴核融合型畳み込みニューラルネットワークによるレーダ信号のパルス内変調の分類
- Authors: Fatih Cagatay Akyon, Yasar Kemal Alp, Gokhan Gok, Orhan Arikan
- Abstract要約: 本研究では、パルス内変調型レーダ信号を自動的に認識するディープラーニングに基づく新しい手法を提案する。
提案するFF-CNN技術は,現在の最先端技術よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 5.199765487172328
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detection and classification of radars based on pulses they transmit is an
important application in electronic warfare systems. In this work, we propose a
novel deep-learning based technique that automatically recognizes intra-pulse
modulation types of radar signals. Re-assigned spectrogram of measured radar
signal and detected outliers of its instantaneous phases filtered by a special
function are used for training multiple convolutional neural networks.
Automatically extracted features from the networks are fused to distinguish
frequency and phase modulated signals. Simulation results show that the
proposed FF-CNN (Feature Fusion based Convolutional Neural Network) technique
outperforms the current state-of-the-art alternatives and is easily scalable
among broad range of modulation types.
- Abstract(参考訳): 送信パルスに基づくレーダーの検出と分類は、電子戦システムにおいて重要な応用である。
本研究では,レーダ信号のパルス内変調型を自動的に認識する深層学習手法を提案する。
複数の畳み込みニューラルネットワークのトレーニングには、計測されたレーダ信号の再割り当てスペクトルと、特別な関数でフィルタリングされた瞬時位相の異常値を検出する。
ネットワークから自動的に抽出された特徴を融合させ、周波数と位相変調信号を区別する。
シミュレーションの結果, ff-cnn (feature fusion based convolutional neural network) 手法は最先端の代替手法よりも優れており, 幅広い変調タイプ間で容易に拡張できることがわかった。
関連論文リスト
- Wavelet Dynamic Selection Network for Inertial Sensor Signal Enhancement [11.793803540713695]
慣性センサーは様々な携帯機器で広く使われている。
ウェーブレット動的選択ネットワーク(WDSNet)は、可変慣性信号に対する適切なウェーブレット基底をインテリジェントに選択する。
WDSNetは、弱教師付き手法として、比較された全教師付き手法の最先端性能を達成する。
論文 参考訳(メタデータ) (2023-12-29T07:44:06Z) - End-to-End Training of Neural Networks for Automotive Radar Interference
Mitigation [9.865041274657823]
本稿では,周波数変調連続波(WFMC)レーダ相互干渉緩和のためのニューラルネットワーク(NN)のトレーニング手法を提案する。
NNが干渉されたレーダー信号をきれいにするために訓練する代わりに、NNをオブジェクト検出マップ上で直接訓練する。
我々は,レーダを用いた物体検出のアルゴリズムであるCA-CFARピーク検出器の連続的な緩和を行う。
論文 参考訳(メタデータ) (2023-12-15T13:47:16Z) - Multi-stage Learning for Radar Pulse Activity Segmentation [51.781832424705094]
無線信号認識は電子戦において重要な機能である。
電子戦システムでは、レーダパルス活動の正確な識別と位置決めが要求される。
ディープラーニングに基づくレーダーパルス活動認識法は、ほとんど未検討のままである。
論文 参考訳(メタデータ) (2023-12-15T01:56:27Z) - Multi-task Learning for Radar Signal Characterisation [48.265859815346985]
本稿では,マルチタスク学習(MTL)問題として,レーダ信号の分類と特徴化に取り組むためのアプローチを提案する。
本稿では,複数のレグレッションタスクと分類タスクを同時最適化するIQST(IQ Signal Transformer)を提案する。
合成レーダデータセット上で提案したMTLモデルの性能を示すとともに,レーダ信号の特徴付けのための一級ベンチマークも提供する。
論文 参考訳(メタデータ) (2023-06-19T12:01:28Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
本稿では,レーダ検出を点雲に展開する深層学習手法を提案する。
このアルゴリズムは、距離依存クラスタリングと入力点雲の事前処理により、レーダ固有の特性に適応する。
我々のネットワークは、レーダポイント雲のセマンティックセグメンテーションのタスクにおいて、PointNet++に基づく最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-05-22T07:09:35Z) - Improved Static Hand Gesture Classification on Deep Convolutional Neural
Networks using Novel Sterile Training Technique [2.534406146337704]
非接触手ポーズと静的ジェスチャー認識は多くのアプリケーションで注目されている。
本稿では, ステレオ画像の導入により, 効率的なデータ収集手法と深部CNN訓練手法を提案する。
提案されたデータ収集とトレーニング手法を適用すると、静的ハンドジェスチャの分類率が85%から93%に向上する。
論文 参考訳(メタデータ) (2023-05-03T11:10:50Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
本稿では,Multi-Input-multiple-output (MIMO)通信システムにおける信号検出について検討する。
パイロット信号が限られているディープニューラルネットワーク(DNN)のトレーニングは困難であり、実用化を妨げている。
我々は、ユニタリ近似メッセージパッシング(UAMP)アルゴリズムを利用して、効率的なメッセージパッシングに基づくベイズ信号検出器を設計する。
論文 参考訳(メタデータ) (2022-10-08T04:32:58Z) - Radar Image Reconstruction from Raw ADC Data using Parametric
Variational Autoencoder with Domain Adaptation [0.0]
本研究では,パラメータ制約付き変分オートエンコーダを提案し,レンジ角画像上でクラスタ化および局所化されたターゲット検出を生成する。
実際のレーダデータを用いて可能なすべてのシナリオにおいて,提案するニューラルネットワークをトレーニングする問題を回避すべく,ドメイン適応戦略を提案する。
論文 参考訳(メタデータ) (2022-05-30T16:17:36Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
空間、時間、周波数領域にわたる無線スペクトルのモニタリングは、5Gと6G以上の通信技術において重要な特徴となる。
本稿では,空間領域全体にわたる不規則分散計測を補間するGAN(Generative Adversarial Network)機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-23T22:25:10Z) - Time-Frequency Analysis based Blind Modulation Classification for
Multiple-Antenna Systems [6.011027400738812]
ブラインド変調分類は、認知無線ネットワークを実装するための重要なステップである。
マルチインプット・マルチアウトプット(MIMO)技術は、軍事や民間の通信システムで広く使われている。
これらのシナリオでは、従来の可能性ベースのアプローチや特徴ベースのアプローチは適用できない。
論文 参考訳(メタデータ) (2020-04-01T12:27:29Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
機械学習(ML)とモデルベースアルゴリズムを組み合わせた,検出設計のシンボル化を目的とした,データ駆動型フレームワークについてレビューする。
このハイブリッドアプローチでは、よく知られたチャネルモデルに基づくアルゴリズムをMLベースのアルゴリズムで拡張し、チャネルモデル依存性を除去する。
提案手法は, 正確なチャネル入出力統計関係を知らなくても, モデルベースアルゴリズムのほぼ最適性能が得られることを示す。
論文 参考訳(メタデータ) (2020-02-14T06:58:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。