論文の概要: How I Learned to Stop Worrying and Love ChatGPT
- arxiv url: http://arxiv.org/abs/2504.05712v1
- Date: Tue, 08 Apr 2025 06:13:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:30:59.553996
- Title: How I Learned to Stop Worrying and Love ChatGPT
- Title(参考訳): 私がChatGPTの心配と愛をやめるために学んだこと
- Authors: Piotr Przymus, Mikołaj Fejzer, Jakub Narębski, Krzysztof Stencel,
- Abstract要約: ChatGPTの生成したコードは、開発プラクティスにおける独特で進化したパラダイムを表している。
ソフトウェア開発におけるChatGPTの変革的役割に関する貴重な洞察の提供を目的としています。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In the dynamic landscape of software engineering, the emergence of ChatGPT-generated code signifies a distinctive and evolving paradigm in development practices. We delve into the impact of interactions with ChatGPT on the software development process, specifically analysing its influence on source code changes. Our emphasis lies in aligning code with ChatGPT conversations, separately analysing the user-provided context of the code and the extent to which the resulting code has been influenced by ChatGPT. Additionally, employing survival analysis techniques, we examine the longevity of ChatGPT-generated code segments in comparison to lines written traditionally. The goal is to provide valuable insights into the transformative role of ChatGPT in software development, illuminating its implications for code evolution and sustainability within the ecosystem.
- Abstract(参考訳): ソフトウェアエンジニアリングの動的な状況において、ChatGPTで生成されたコードの出現は、開発プラクティスにおける独特で進化したパラダイムを表している。
ソフトウェア開発プロセスにおけるChatGPTとのインタラクションの影響を掘り下げ、特にソースコードの変更に対するその影響を分析します。
コードとChatGPTの会話を一致させることが、コードのユーザが提供するコンテキストと結果コードがChatGPTの影響範囲を別々に分析することにあります。
さらに、サバイバル解析技術を用いて、伝統的に書かれた行と比較して、ChatGPT生成したコードセグメントの長寿命性を検討する。
目標は、ソフトウェア開発におけるChatGPTの変革的役割に関する貴重な洞察を提供することだ。
関連論文リスト
- Distinguishing LLM-generated from Human-written Code by Contrastive Learning [5.553326595990857]
大規模言語モデル(LLM)は、様々なタスクに対して高品質なコンテンツを生成する能力があることが証明されたため、大きな注目を集めている。
ニュース、教育、ソフトウェア工学など、さまざまな分野における潜在的なリスクに対する懸念が高まっている。
コントラスト学習フレームワークとUniXcoderで構築したセマンティックエンコーダに基づく,新しいChatGPT生成コード検出器CodeGPTSensorを提案する。
論文 参考訳(メタデータ) (2024-11-07T13:39:14Z) - Impact of the Availability of ChatGPT on Software Development: A Synthetic Difference in Differences Estimation using GitHub Data [49.1574468325115]
ChatGPTは、ソフトウェア生産効率を向上させるAIツールである。
10万人あたりのgitプッシュ数、リポジトリ数、ユニークな開発者数に対するChatGPTの影響を見積もっています。
これらの結果は、ChatGPTのようなAIツールが開発者の生産性を大幅に向上させる可能性があることを示唆している。
論文 参考訳(メタデータ) (2024-06-16T19:11:15Z) - Investigating the Utility of ChatGPT in the Issue Tracking System: An
Exploratory Study [5.176434782905268]
本研究は,ChatGPTと開発者間の相互作用を分析し,それらの活動を分析し,解決するものである。
私たちの調査によると、開発者は主にブレインストーミングソリューションにChatGPTを使用しているが、しばしばChatGPT生成コードを使う代わりにコードを書くことを選ぶ。
論文 参考訳(メタデータ) (2024-02-06T06:03:05Z) - Exploring ChatGPT's Capabilities on Vulnerability Management [56.4403395100589]
我々は、70,346のサンプルを含む大規模なデータセットを用いて、完全な脆弱性管理プロセスを含む6つのタスクでChatGPTの機能を探求する。
注目すべき例として、ChatGPTのソフトウェアバグレポートのタイトル生成などのタスクにおける熟練度がある。
以上の結果から,ChatGPTが抱える障害が明らかとなり,将来的な方向性に光を当てた。
論文 参考訳(メタデータ) (2023-11-11T11:01:13Z) - DevGPT: Studying Developer-ChatGPT Conversations [12.69439932665687]
本稿では、ソフトウェア開発者がChatGPTとどのように相互作用するかを調査するためのデータセットであるDevGPTを紹介する。
データセットには、ChatGPTからの29,778のプロンプトとレスポンスが含まれており、コードスニペットは19,106である。
論文 参考訳(メタデータ) (2023-08-31T06:55:40Z) - No Need to Lift a Finger Anymore? Assessing the Quality of Code Generation by ChatGPT [28.68768157452352]
本稿では,ChatGPTを用いたコード生成の質について検討する。
私たちは5つの言語(C、C++、Java、Python、JavaScript)で728のアルゴリズム問題と、コード生成タスクの54のコードシナリオを持つ18のCWEを活用しています。
この結果から,ChatGPTベースのコード生成に生じる潜在的な問題や限界が明らかになった。
論文 参考訳(メタデータ) (2023-08-09T10:01:09Z) - Improving ChatGPT Prompt for Code Generation [13.303599826870705]
OpenAIの言語モデルChatGPTは、幅広いテキスト入力に対するヒューマンライクな応答を生成する強力なツールとして登場した。
テキスト・ツー・コード生成とコード・ツー・コード生成を含む2つのコード生成タスクにおけるChatGPTの機能を評価する。
その結果,ChatGPTをガイドするプロンプトを慎重に設計することで,生成性能を大幅に向上できることがわかった。
論文 参考訳(メタデータ) (2023-05-15T05:37:33Z) - InternGPT: Solving Vision-Centric Tasks by Interacting with ChatGPT
Beyond Language [82.92236977726655]
InternGPTは textbfinteraction, textbfnonverbal, textbfchatbot の略である。
InternGPT(iGPT)という対話型視覚フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-09T17:58:34Z) - ChatLog: Carefully Evaluating the Evolution of ChatGPT Across Time [54.18651663847874]
ChatGPTは大きな成功をおさめ、インフラ的な地位を得たと考えられる。
既存のベンチマークでは,(1)周期的評価の無視,(2)きめ細かい特徴の欠如という2つの課題に直面する。
2023年3月から現在まで,21のNLPベンチマークに対して,さまざまな長文ChatGPT応答を大規模に記録した常時更新データセットであるChatLogを構築している。
論文 参考訳(メタデータ) (2023-04-27T11:33:48Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
大規模言語モデル(LLM)は、自然言語処理(NLP)において最も重要なブレークスルーとして登場した。
本稿では,高,中,低,低リソースの37言語を対象として,ChatGPTを7つのタスクで評価する。
従来のモデルと比較すると,様々なNLPタスクや言語に対するChatGPTの性能は低下していた。
論文 参考訳(メタデータ) (2023-04-12T05:08:52Z) - To ChatGPT, or not to ChatGPT: That is the question! [78.407861566006]
本研究は,ChatGPT検出における最新の手法を包括的かつ現代的に評価するものである。
我々は、ChatGPTと人間からのプロンプトからなるベンチマークデータセットをキュレートし、医療、オープンQ&A、ファイナンスドメインからの多様な質問を含む。
評価の結果,既存の手法ではChatGPT生成内容を効果的に検出できないことがわかった。
論文 参考訳(メタデータ) (2023-04-04T03:04:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。