Temporal Dynamic Embedding for Irregularly Sampled Time Series
- URL: http://arxiv.org/abs/2504.05768v1
- Date: Tue, 08 Apr 2025 07:49:22 GMT
- Title: Temporal Dynamic Embedding for Irregularly Sampled Time Series
- Authors: Mincheol Kim, Soo-Yong Shin,
- Abstract summary: temporal dynamic embedding (TDE) enables neural network models to receive data that change the number of variables over time.<n>Experiment was conducted on three clinical datasets: PhysioNet 2012, MIMIC-III, and PhysioNet 2019.
- Score: 0.15346678870160887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In several practical applications, particularly healthcare, clinical data of each patient is individually recorded in a database at irregular intervals as required. This causes a sparse and irregularly sampled time series, which makes it difficult to handle as a structured representation of the prerequisites of neural network models. We therefore propose temporal dynamic embedding (TDE), which enables neural network models to receive data that change the number of variables over time. TDE regards each time series variable as an embedding vector evolving over time, instead of a conventional fixed structured representation, which causes a critical missing problem. For each time step, TDE allows for the selective adoption and aggregation of only observed variable subsets and represents the current status of patient based on current observations. The experiment was conducted on three clinical datasets: PhysioNet 2012, MIMIC-III, and PhysioNet 2019. The TDE model performed competitively or better than the imputation-based baseline and several recent state-of-the-art methods with reduced training runtime.
Related papers
- Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) trains a Neural SDE in a simulation-free manner, bypassing backpropagation through the dynamics.<n>We demonstrate improved performance on three clinical time series datasets in terms of absolute performance and uncertainty prediction.
arXiv Detail & Related papers (2024-10-28T15:54:50Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Event2Graph: Event-driven Bipartite Graph for Multivariate Time-series
Anomaly Detection [25.832983667044708]
We propose a dynamic bipartite graph structure to encode the inter-dependencies between time-series.
Based on this design, relations between time series can be explicitly modelled via dynamic connections to event nodes.
arXiv Detail & Related papers (2021-08-15T17:50:37Z) - Neural Controlled Differential Equations for Online Prediction Tasks [4.6453787256723365]
We show that Neural CDEs are not suitable for use in textitonline prediction tasks, where predictions need to be made in real-time.
Here, we identify several theoretical conditions that schemes for Neural CDEs should satisfy, such as boundedness and uniqueness.
Second, we use these to motivate the introduction of new schemes that address these conditions, offering in particular measurability.
Third, we empirically benchmark our online Neural CDE model on three continuous monitoring tasks from the MIMIC-IV medical database.
arXiv Detail & Related papers (2021-06-21T12:23:45Z) - CARRNN: A Continuous Autoregressive Recurrent Neural Network for Deep
Representation Learning from Sporadic Temporal Data [1.8352113484137622]
In this paper, a novel deep learning-based model is developed for modeling multiple temporal features in sporadic data.
The proposed model, called CARRNN, uses a generalized discrete-time autoregressive model that is trainable end-to-end using neural networks modulated by time lags.
It is applied to multivariate time-series regression tasks using data provided for Alzheimer's disease progression modeling and intensive care unit (ICU) mortality rate prediction.
arXiv Detail & Related papers (2021-04-08T12:43:44Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.