論文の概要: MDK12-Bench: A Multi-Discipline Benchmark for Evaluating Reasoning in Multimodal Large Language Models
- arxiv url: http://arxiv.org/abs/2504.05782v1
- Date: Tue, 08 Apr 2025 08:06:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:31:21.569979
- Title: MDK12-Bench: A Multi-Discipline Benchmark for Evaluating Reasoning in Multimodal Large Language Models
- Title(参考訳): MDK12-Bench:マルチモーダル大言語モデルにおける推論評価のための多分野ベンチマーク
- Authors: Pengfei Zhou, Fanrui Zhang, Xiaopeng Peng, Zhaopan Xu, Jiaxin Ai, Yansheng Qiu, Chuanhao Li, Zhen Li, Ming Li, Yukang Feng, Jianwen Sun, Haoquan Zhang, Zizhen Li, Xiaofeng Mao, Wangbo Zhao, Kai Wang, Xiaojun Chang, Wenqi Shao, Yang You, Kaipeng Zhang,
- Abstract要約: 実世界のK-12試験を通してMLLMの推論能力を評価する多分野ベンチマークであるMDK12-Benchを紹介する。
本ベンチマークは,小学校から12年生までの様々な難易度にまたがる140Kの推論事例からなる。
6,827のインスタンスレベルの知識ポイントアノテーションが,十分に整理された知識構造,詳細な回答説明,難易度ラベル,年次分割に基づいている。
- 参考スコア(独自算出の注目度): 50.43793764203352
- License:
- Abstract: Multimodal reasoning, which integrates language and visual cues into problem solving and decision making, is a fundamental aspect of human intelligence and a crucial step toward artificial general intelligence. However, the evaluation of multimodal reasoning capabilities in Multimodal Large Language Models (MLLMs) remains inadequate. Most existing reasoning benchmarks are constrained by limited data size, narrow domain coverage, and unstructured knowledge distribution. To close these gaps, we introduce MDK12-Bench, a multi-disciplinary benchmark assessing the reasoning capabilities of MLLMs via real-world K-12 examinations. Spanning six disciplines (math, physics, chemistry, biology, geography, and information science), our benchmark comprises 140K reasoning instances across diverse difficulty levels from primary school to 12th grade. It features 6,827 instance-level knowledge point annotations based on a well-organized knowledge structure, detailed answer explanations, difficulty labels and cross-year partitions, providing a robust platform for comprehensive evaluation. Additionally, we present a novel dynamic evaluation framework to mitigate data contamination issues by bootstrapping question forms, question types, and image styles during evaluation. Extensive experiment on MDK12-Bench reveals the significant limitation of current MLLMs in multimodal reasoning. The findings on our benchmark provide insights into the development of the next-generation models. Our data and codes are available at https://github.com/LanceZPF/MDK12.
- Abstract(参考訳): 言語と視覚的手がかりを問題解決と意思決定に統合するマルチモーダル推論は、人間の知性の基本的側面であり、人工知能にとって重要なステップである。
しかし,Multimodal Large Language Models (MLLM) におけるマルチモーダル推論能力の評価は依然として不十分である。
既存の推論ベンチマークのほとんどは、限られたデータサイズ、狭いドメインカバレッジ、構造化されていない知識分布によって制約されている。
これらのギャップを埋めるために,実世界のK-12試験を通じてMLLMの推論能力を評価するマルチディシプリタリーベンチマークMDK12-Benchを紹介する。
私たちのベンチマークでは、数学、物理学、化学、生物学、地理、情報科学の6つの分野にまたがって、小学校から12年生までの様々な難易度にまたがる140Kの推論事例を比較しています。
6,827のインスタンスレベルの知識ポイントアノテーションが,十分に整理された知識構造,詳細な回答説明,難易度ラベル,年単位の分割をベースとして,包括的な評価のための堅牢なプラットフォームを提供する。
さらに,評価中の質問フォーム,質問タイプ,画像スタイルをブートストラップすることで,データの汚染問題を緩和する新しい動的評価フレームワークを提案する。
MDK12-Benchでの大規模な実験により、マルチモーダル推論における現在のMLLMの大幅な制限が明らかになった。
ベンチマークの結果は、次世代モデルの開発に関する洞察を与えてくれる。
私たちのデータとコードはhttps://github.com/LanceZPF/MDK12.comで公開されています。
関連論文リスト
- Can MLLMs Reason in Multimodality? EMMA: An Enhanced MultiModal ReAsoning Benchmark [73.27104042215207]
EMMAは,数学,物理,化学,コーディングにまたがる有機マルチモーダル推論を対象とするベンチマークである。
EMMAタスクは、各モードで独立に推論することで対処できない高度なクロスモーダル推論を要求する。
EMMA上での最先端MLLMの評価は、複雑なマルチモーダルおよびマルチステップ推論タスクの処理において、重大な制限を生じさせる。
論文 参考訳(メタデータ) (2025-01-09T18:55:52Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
MLLM(Multimodal large language model)は、多モーダルタスクにおいて大きな可能性を秘めている。
既存の命令チューニングデータセットは、中間的合理性のないフレーズレベルの答えのみを提供する。
そこで本研究では,大規模マルチモーダル・インストラクション・チューニング・データセットを構築するためのスケーラブルで費用対効果の高い手法を提案する。
論文 参考訳(メタデータ) (2024-12-06T18:14:24Z) - MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
我々は、LVLM(Large Vision-Language Models)において、インターリーブされたマルチモーダル理解と生成を評価するための大規模ベンチマークであるMMIEを紹介する。
MMIEは、数学、コーディング、物理学、文学、健康、芸術を含む3つのカテゴリ、12のフィールド、102のサブフィールドにまたがる20Kの厳密にキュレートされたマルチモーダルクエリで構成されている。
インターリーブされたインプットとアウトプットの両方をサポートし、多様な能力を評価するために、複数選択とオープンな質問フォーマットの混合を提供する。
論文 参考訳(メタデータ) (2024-10-14T04:15:00Z) - ErrorRadar: Benchmarking Complex Mathematical Reasoning of Multimodal Large Language Models Via Error Detection [60.297079601066784]
エラー検出におけるMLLMの能力を評価するために設計された最初のベンチマークであるErrorRadarを紹介する。
ErrorRadarはエラーステップ識別とエラー分類という2つのサブタスクを評価している。
2500の高品質なマルチモーダルK-12数学問題で構成され、実世界の学生相互作用から収集される。
GPT-4oの優れた性能は、まだ人間の評価に約10%遅れているため、大きな課題が残っている。
論文 参考訳(メタデータ) (2024-10-06T14:59:09Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - NPHardEval4V: A Dynamic Reasoning Benchmark of Multimodal Large Language
Models [34.91372939329467]
MLLMの純粋推論能力を評価するためのベンチマークであるNPHardEval4Vを導入する。
異なるモデルにまたがる推論能力に有意な差が認められた。
また,視覚,テキスト,視覚とテキストの組み合わせがMLLMの推論能力に与える影響についても検討した。
論文 参考訳(メタデータ) (2024-03-04T07:10:31Z) - SceMQA: A Scientific College Entrance Level Multimodal Question
Answering Benchmark [42.91902601376494]
本稿では,SceMQAについて紹介する。SceMQAは,大学入学レベルでの科学的マルチモーダル質問応答のための新しいベンチマークである。
SceMQAは数学、物理学、化学、生物学などの中核的な科学分野に焦点を当てている。
複数選択と自由応答の混在を特徴とし、AIモデルの能力を総合的に評価する。
論文 参考訳(メタデータ) (2024-02-06T19:16:55Z) - GeomVerse: A Systematic Evaluation of Large Models for Geometric
Reasoning [17.61621287003562]
幾何学問題のレンズを用いて視覚言語モデル(VLM)を様々な軸に沿って評価する。
複数の軸に沿った制御可能な難易度を持つ幾何学的質問の合成データセットを手続き的に作成する。
最新のVLMのベンチマークを用いて得られた実験結果から,これらのモデルが幾何学的対象に適さないことが示された。
論文 参考訳(メタデータ) (2023-12-19T15:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。