論文の概要: NPHardEval4V: A Dynamic Reasoning Benchmark of Multimodal Large Language
Models
- arxiv url: http://arxiv.org/abs/2403.01777v2
- Date: Tue, 5 Mar 2024 18:26:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-06 19:44:30.439807
- Title: NPHardEval4V: A Dynamic Reasoning Benchmark of Multimodal Large Language
Models
- Title(参考訳): NPHardEval4V:マルチモーダル大言語モデルの動的推論ベンチマーク
- Authors: Lizhou Fan, Wenyue Hua, Xiang Li, Kaijie Zhu, Mingyu Jin, Lingyao Li,
Haoyang Ling, Jinkui Chi, Jindong Wang, Xin Ma, Yongfeng Zhang
- Abstract要約: MLLMの純粋推論能力を評価するためのベンチマークであるNPHardEval4Vを導入する。
異なるモデルにまたがる推論能力に有意な差が認められた。
また,視覚,テキスト,視覚とテキストの組み合わせがMLLMの推論能力に与える影響についても検討した。
- 参考スコア(独自算出の注目度): 34.91372939329467
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the reasoning capabilities of Multimodal Large Language Models
(MLLMs) is an important area of research. In this study, we introduce a dynamic
benchmark, NPHardEval4V, aimed at addressing the existing gaps in evaluating
the pure reasoning abilities of MLLMs. Our benchmark aims to provide a venue to
disentangle the effect of various factors such as image recognition and
instruction following, from the overall performance of the models, allowing us
to focus solely on evaluating their reasoning abilities. It is built by
converting textual description of questions from NPHardEval to image
representations. Our findings reveal significant discrepancies in reasoning
abilities across different models and highlight the relatively weak performance
of MLLMs compared to LLMs in terms of reasoning. We also investigate the impact
of different prompting styles, including visual, text, and combined visual and
text prompts, on the reasoning abilities of MLLMs, demonstrating the different
impacts of multimodal inputs in model performance. Unlike traditional
benchmarks, which focus primarily on static evaluations, our benchmark will be
updated monthly to prevent overfitting and ensure a more authentic and
fine-grained evaluation of the models. We believe that this benchmark can aid
in understanding and guide the further development of reasoning abilities in
MLLMs. The benchmark dataset and code are available at
https://github.com/lizhouf/NPHardEval4V
- Abstract(参考訳): MLLM(Multimodal Large Language Models)の推論能力を理解することは重要な研究分野である。
本研究では,MLLMの純粋推論能力の評価において,既存のギャップに対処することを目的とした動的ベンチマーク NPHardEval4V を提案する。
本ベンチマークは,モデル全体の性能から,画像認識や後続命令などの様々な要因の影響を解消し,推論能力の評価にのみ焦点をあてる場を提供することを目的としている。
NPHardEvalからの質問のテキスト記述を画像表現に変換することで構築される。
本研究により,異なるモデル間での推論能力の相違が明らかとなり,MLLMの比較的弱い性能が示唆された。
また,マルチモーダル入力がモデル性能に与える影響を示すため,mllmsの推論能力に視覚,テキスト,視覚とテキストの組み合わせを含む様々なプロンプトスタイルが与える影響について検討した。
主に静的評価に焦点を当てた従来のベンチマークとは異なり、我々のベンチマークは、オーバーフィットを防止し、モデルのより正確できめ細かい評価を保証するために毎月更新される。
このベンチマークはMLLMにおける推論能力のさらなる発展の理解と指導に役立つと考えている。
ベンチマークデータセットとコードはhttps://github.com/lizhouf/nphardeval4vで入手できる。
関連論文リスト
- A Survey on Benchmarks of Multimodal Large Language Models [65.87641718350639]
本稿では,Multimodal Large Language Models (MLLM) のベンチマークと評価について概説する。
本研究では,(1)知覚と理解,(2)認知と推論,(3)特定のドメイン,(4)キー能力,(5)他のモダリティに着目した。
我々のキーとなる主張は、MLLMの開発をより良いものにするための重要な規律として評価されるべきである、ということである。
論文 参考訳(メタデータ) (2024-08-16T09:52:02Z) - Multimodal Causal Reasoning Benchmark: Challenging Vision Large Language Models to Infer Causal Links Between Siamese Images [19.923665989164387]
我々は,Multimodal Causal Reasoningベンチマーク,すなわち MuCR を提案し,大規模言語モデルに挑戦する。
具体的には,セマンティック因果関係と視覚的手がかりを組み込んだシアム画像を作成するための,プロンプト駆動画像合成手法を提案する。
我々の広範な実験により、現在最先端のVLLMは、我々が期待したようなマルチモーダル因果推論に熟練していないことが明らかとなった。
論文 参考訳(メタデータ) (2024-08-15T12:04:32Z) - Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
本研究では,VALSEベンチマークを用いたマルチモーダル大規模言語モデル(MLLM)の性能評価を目的とした。
我々は,モデルサイズや事前学習データセットの異なる最先端MLLMの包括的評価を行った。
論文 参考訳(メタデータ) (2024-07-17T11:26:47Z) - Visualization Literacy of Multimodal Large Language Models: A Comparative Study [12.367399155606162]
MLLM(Multimodal large language model)は、MLLM(Multimodal large language model)とLLM(LLM)の固有の能力を組み合わせて、マルチモーダルコンテキストを推論する。
ビジュアライゼーションにおける最近の多くの研究は、可視化結果を理解し、解釈し、自然言語のユーザに対して視覚化の内容を説明するMLLMの能力を実証している。
本研究では,可視化リテラシーの概念を利用してMLLMを評価することにより,そのギャップを埋めることを目的とする。
論文 参考訳(メタデータ) (2024-06-24T17:52:16Z) - RUPBench: Benchmarking Reasoning Under Perturbations for Robustness Evaluation in Large Language Models [12.112914393948415]
RUPBenchは,多種多様な推論タスクにわたる大規模言語モデル(LLM)を評価するために設計されたベンチマークである。
我々のベンチマークには15の推論データセットが組み込まれており、コモンセンス、算術、論理、知識集約推論に分類されている。
GPT-4o, Llama3, Phi-3, Gemmaといった最先端のLCMの原文および摂動データセットの性能を調べることにより, その堅牢性およびエラーパターンを詳細に解析する。
論文 参考訳(メタデータ) (2024-06-16T17:26:44Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
LVLM(Large Vision-Language Models)は幻覚に悩まされ、このモデルでは可聴音を発生させるが、実際には誤出力を発生させる。
既存のベンチマークはスコープに限られており、主にオブジェクト幻覚に焦点を当てている。
対象,属性,関係を多次元のベンチマークで表現し,連想バイアスに基づいて画像を選択する。
論文 参考訳(メタデータ) (2024-04-22T04:49:22Z) - CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models [58.95889895912716]
我々は、自由形式のテキストで提供されるコンテキストを用いて視覚的理解を高めるモデルの有効性を評価するために、CODISと名付けられた新しいベンチマークを導入する。
以上の結果から,MLLMは必ずしも人体性能に劣っていることが示唆された。
このことは、MLLMが視覚を文脈依存的に理解する能力を高めることの必要性を浮き彫りにする。
論文 参考訳(メタデータ) (2024-02-21T08:21:12Z) - Mementos: A Comprehensive Benchmark for Multimodal Large Language Model
Reasoning over Image Sequences [80.54979242912944]
本稿では,MLLMの逐次画像推論能力を評価するためのベンチマークであるMementosを紹介する。
MLLMは与えられた画像列の動的情報を正確に記述するのに苦労しており、しばしば幻覚/誤表現につながる。
論文 参考訳(メタデータ) (2024-01-19T07:10:13Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - InfiMM-Eval: Complex Open-Ended Reasoning Evaluation For Multi-Modal
Large Language Models [50.03163753638256]
MLLM(Multi-modal Large Language Models)は人工知能の分野で注目されている。
本ベンチマークは, 帰納的, 帰納的, 類推的推論の3つの主要な推論カテゴリから構成される。
我々は,この厳密に開発されたオープンエンド多段階精巧な推論ベンチマークを用いて,代表MLLMの選択を評価する。
論文 参考訳(メタデータ) (2023-11-20T07:06:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。